(1)如圖1,點P是正方形ABCD內的一點,把△ABP繞點B順時針方向旋轉,使點A與點C重合,點P的對應點是Q.若PA=3,PB=2,PC=5,求∠BQC的度數(shù).
(2)點P是等邊三角形ABC內的一點,若PA=12,PB=5,PC=13,求∠BPA的度數(shù).
解:(1)連接PQ.
由旋轉可知:,QC=PA=3.
又∵ABCD是正方形,
∴△ABP繞點B順時針方向旋轉了90°,才使點A與C重合,
即∠PBQ=90°,
∴∠PQB=45°,PQ=4.
則在△PQC中,PQ=4,QC=3,PC=5,
∴PC2=PQ2+QC2.
即∠PQC=90°.
故∠BQC=90°+45°=135°.
(2)將此時點P的對應點是點P′.
由旋轉知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.
又∵△ABC是正三角形,
∴△ABP繞點B順時針方向旋轉60°,才使點A與C重合,
得∠PBP′=60°,
又∵P′B=PB=5,
∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.
因此,在△PP′C中,PC=13,PP′=5,P′C=12,
∴PC2=PP′2+P′C2.
即∠PP′C=90°.
故∠BPA=∠BP′C=60°+90°=150°.
科目:初中數(shù)學 來源: 題型:
.為增強市民的節(jié)水意識,某市對居民用水實行“階梯收費”:規(guī)定每戶每月不超過月用水標準部分的水價為1.5元/噸,超過月用水標準量部分的水價為2.5元/噸.該市小明家5月份用水12噸,交水費20元.請問:該市規(guī)定的每戶月用水標準量是多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com