【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊ABC和等邊CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:AD=BE;PQAE;AP=BQ;DE=DP; ⑤∠AOB=60°.其中正確的結(jié)論的個(gè)數(shù)是(

A.2個(gè) B.3個(gè) C. 4個(gè) D.5個(gè)

【答案】C

【解析】

試題分析:已知ABC、DCE為正三角形, DCE=BCA=60°∴∠DCB=60°,

又因?yàn)?/span>DPC=DAC+BCA,BCA=60°,∴∠DPC>60° 故DP不等于DE,錯(cuò).

∵△ABC、DCE為正三角形, ∴∠ACB=DCE=60°,AC=BC,DC=EC, ∴∠ACB+BCD=DCE+BCD,

∴∠ACD=BCE, ∴△ACD≌△BCE(SAS), ∴∠CAD=CBE,AD=BE,故正確;

∴∠AOB=CAD+CEB=CBE+CEB, ∵∠ACB=CBE+CEB=60°, ∴∠AOB=60°,故正確;

∵∠ACB=DCE=60°, ∴∠BCD=60° ∴∠ACP=BCQ, AC=BC,DAC=QBC,

∴△ACP≌△BCQ(ASA), AP=BQ,故正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】星期天,李玉剛同學(xué)隨爸爸媽媽會(huì)老家探望爺爺奶奶,爸爸8:30騎自行車(chē)先走,平均每小時(shí)騎行20km;李玉剛同學(xué)和媽媽9:30乘公交車(chē)后行,公交車(chē)平均速度是40km/h.爸爸的騎行路線與李玉剛同學(xué)和媽媽的乘車(chē)路線相同,路程均為40km/h.設(shè)爸爸騎行時(shí)間為xh

1請(qǐng)分別寫(xiě)出爸爸的騎行路程y1km、李玉剛同學(xué)和媽媽的乘車(chē)路程y2km與xh之間的函數(shù)解析式,并注明自變量的取值范圍;

2請(qǐng)?jiān)谕粋(gè)平面直角坐標(biāo)系中畫(huà)出1中兩個(gè)函數(shù)的圖象;

3請(qǐng)回答誰(shuí)先到達(dá)老家.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.

1已知BD=,求正方形ABCD的邊長(zhǎng);

2猜想線段EM與CN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC在平面直角坐標(biāo)系中的位置如圖所示.將ABC向右平移6個(gè)單位長(zhǎng)度,再向下平移6個(gè)單位長(zhǎng)度得到A1B1C1(圖中每個(gè)小方格邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)

(1)在圖中畫(huà)出平移后的A1B1C1;

(2)直接寫(xiě)出A1B1C1各頂點(diǎn)的坐標(biāo).

; ;

3)求出ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只螞蟻?zhàn)哌^(guò)的路線可以看作是_______________________的例子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AM,CN分別是∠BAD和∠BCD的平分線,添加一個(gè)條件,仍無(wú)法判斷四邊形AMCN為菱形的是(

A.AM=AN B.MN⊥AC

C.MN是∠AMC的平分線 D.∠BAD=120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC和FPQ均是等邊三角形,點(diǎn)D、E、F分別是ABC三邊的中點(diǎn),點(diǎn)P在AB邊上,連接EF、QE.若AB=6,PB=1,則QE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】單項(xiàng)式乘以多項(xiàng)式依據(jù)的運(yùn)算律是(

A. 加法結(jié)合律B. 加法交換律C. 乘法結(jié)合律D. 乘法分配律

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)ya(x-k2ka≠0),不論k為何實(shí)數(shù),它的頂點(diǎn)都在直線__________上.

查看答案和解析>>

同步練習(xí)冊(cè)答案