情境·觀察:
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△,如圖1所示,將△的頂點與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D,A(),B在同一條直線上,如圖2所示,觀察圖2可知:旋轉(zhuǎn)角=       ° ,與BC相等的線段是         。

問題·探究:
如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰直角△ABE和等腰直角△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q,試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論。

關(guān)系·拓展:
如圖4,已知正方形ABCD,P為邊BC上任意一點,連結(jié)AP,把AP繞點P順時針方向旋轉(zhuǎn)90°,點A對應(yīng)點為點,連接,求的度數(shù)。
(1)  90°,AD;(2)EP=FQ,證明見解析;(3)45°.

試題分析:(1)根據(jù)矩形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)填空;
(2)由全等三角形△APE≌△BGA的對應(yīng)邊相等知,EP=AG;同理由全等三角形△FQA≌△AGC的對應(yīng)邊相等知FQ=AG,所以易證EP=FQ;
(3)由旋轉(zhuǎn)的性質(zhì)易求∠A1CE=45°.
試題解析:(1)∵四邊形ABCD是矩形,
∴如圖1,在Rt△ADC與Rt△ABC中,
,
∴Rt△ADC≌Rt△ABC(HL),
即如圖2,Rt△ABC≌Rt△C'DA′,
∴BC=AD,∠BAC=∠DC′A′.
又∵∠DC′A′+∠DA′C′=90°,
∴∠DA′C′+∠CAB=90°,
∴∠CAC′=90°.
問題·探究:
解:EP=FQ
∵∠AGB=∠EPA=∠EAB=90°
∴∠EAP+∠PEA=90°
∠EAP+∠BAG=90°
∴∠BAG=∠PEA
∵∠EPA=∠AGB
∠PEA=∠BAG
AE=AB
∴△EPA≌△AGB
∴EP=AG
同理:QF=AG
∴EP=FQ
聯(lián)系·拓展:
解:∠A1CE=45°
過A1作A1Q⊥BE于點Q

由上可知:△ABP≌△A1QP
∴BP=A1Q,AB=PQ
∵AB=BC
∴BC=PQ
∴BP=CQ
∴A1Q=CQ
∴∠A1CE =45°
考點: 相似形綜合題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖正方形網(wǎng)格中的△ABC,若小方格邊長為1,請你根據(jù)所學的知
(1)求△ABC的面積
(2)判斷△ABC是什么形狀? 并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若△ABC≌△DEF,且∠A=110°,∠F=40°,則∠E=     度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在矩形紙片ABCD中,,其中m≥1,將該矩形沿EF折疊(點E、F分別在邊AB、CD上),使點B落在AD邊上的點M處,點C落在點N處,MN與CD相交于點P,連接EP.設(shè),其中0<n≤1.
(1)如圖2,當(即M點與D點重合),時,則        
(2)如圖3,當(M為AD的中點),m的值發(fā)生變化時,求證:;
(3)如圖1,當,n的值發(fā)生變化時,的值是否發(fā)生變化?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若三角形的兩邊長分別為3、4,且周長為整數(shù),這樣的三角形共有  個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

問題:如圖1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=800,則∠BEC=         ;若∠A=n0,則∠BEC=         
探究:
(1)如圖2,在△ABC中,BD、BE三等分∠ABC,CD、CE三等分∠ACB.若∠A=n0,則∠BEC=         ;
(2)如圖3,在△ABC中,BE平分∠ABC,CE平分外角∠ACM.若∠A=n0,則∠BEC=         
(3)如圖4,在△ABC中,BE平分外角∠CBM,CE平分外角∠BCN.若∠A=n0,則∠BEC=        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點E在正方形ABCD外,連接AE、BE、DE,過點A作AE的垂線交DE于點F.若AE=AF=1,BF=.則下列結(jié)論:①△AFD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④SAFD+SAFB=1+;⑤S正方形ABCD =4+.其中正確結(jié)論的序號是 (    )
A.①③④B.①②⑤C.③④⑤D.①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知的三邊長分別是6cm、8cm、10cm,則的面積是(   )
A.24B.30C.40D.48

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖鋼架中,焊上等長的13根鋼條來加固鋼架,若AP1=P1P2=P2P3=…=P13P14=P14A,則∠A的度數(shù)是 (        )

查看答案和解析>>

同步練習冊答案