【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:(1)(2)的計算結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.24, ≈2.45)
【答案】
(1)解:如圖,作AD⊥BC于點D.
Rt△ABD中,
AD=ABsin45°=4× =2 .
在Rt△ACD中,
∵∠ACD=30°,
∴AC=2AD=4 ≈5.6.
即新傳送帶AC的長度約為5.6米
(2)解:結(jié)論:貨物MNQP應挪走.
解:在Rt△ABD中,BD=ABcos45°=4× =2 .
在Rt△ACD中,CD=ACcos30°=2 .
∴CB=CD﹣BD=2 ﹣2 =2( ﹣ )≈2.1.
∵PC=PB﹣CB≈4﹣2.1=1.9<2,
∴貨物MNQP應挪走
【解析】(1)過A作BC的垂線AD.在構建的直角三角形中,首先求出兩個直角三角形的公共直角邊,進而在Rt△ACD中,求出AC的長.(2)通過解直角三角形,可求出BD、CD的長,進而可求出BC、PC的長.然后判斷PC的值是否大于2米即可.
科目:初中數(shù)學 來源: 題型:
【題目】觀察下圖,思考問題:
(1)你認識上面的圖片中的哪些物體?
(2)這些物體的表面形狀類似與哪些幾何體?說說你的理由。
(3)你能再舉出一些常見的圖形嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.x2﹣2是二次二項式
B.單項式﹣x2的系數(shù)是1
C.使式子 有意義的x的取值范圍是x>﹣2
D.若分式 的值等于0,則a=±1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O過點B、C,圓心O在等腰直角三角形ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為( )
A.6
B.13
C.
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個袋子中裝有3個紅球和2個黃球,這些球的形狀、大。|(zhì)地完全相同,在看不到球的條件下,隨機從袋子里同時摸出2個球,其中2個球的顏色相同的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國中東部地區(qū)霧霾天氣趨于嚴重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關系式;并求出自變量x的取值范圍;
(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為12的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交BC于點G.則BG的長為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關于y軸的對稱點P′在反比例函數(shù) (k≠0)的圖象上.
(1)求a的值;
(2)直接寫出點P′的坐標;
(3)求反比例函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com