【題目】如圖,用細線懸掛一個小球,小球在豎直平面內(nèi)的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,∠AOB=66°,求細線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
【答案】15cm
【解析】
試題設(shè)細線OB的長度為xcm,作AD⊥OB于D,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函數(shù)得出方程,解方程即可.
試題解析:設(shè)細線OB的長度為xcm,作AD⊥OB于D,如圖所示:
∴∠ADM=90°,
∵∠ANM=∠DMN=90°,
∴四邊形ANMD是矩形,
∴AN=DM=14cm,
∴DB=14﹣5=9cm,
∴OD=x﹣9,
在Rt△AOD中,cos∠AOD=,
∴cos66°==0.40,
解得:x=15,
∴OB=15cm.
【題型】解答題
【結(jié)束】
20
【題目】已知:如圖,在半徑為的中,、是兩條直徑,為的中點,的延長線交于點,且,連接。.
(1)求證:;
(2)求的長.
【答案】(1)證明見解析; (2)EM=4.
【解析】
(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應(yīng)角相等,即可得△AMC∽△EMB;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度.
(1)連接AC、EB.
∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AMBM=EMCM;
(2)∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2.
∵DE,CD=8,且EC為正數(shù),∴EC=7.
∵M為OB的中點,∴BM=2,AM=6.
∵AMBM=EMCM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60,AB=30。點D是AC上的動點,過D作DF⊥BC于F,再過F作FE//AC,交AB于E。設(shè)CD=x,DF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)當四邊形AEFD為菱形時,求x的值;
(3)當△FED是直角三角形時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點D是BC的中點作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關(guān)系是______;
將正方形DEFG繞點D逆時針方向旋轉(zhuǎn),
判斷中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;
若,當AE取最大值時,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,動點E,F分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.
(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理;
(2)如圖2,當E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時CE:CD的值;
(3)如圖3,當E,F分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行社推出一條成本價為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報價(元/人)之間的關(guān)系為,已知:旅游主管部門規(guī)定該旅游線路報價在800元/人~1200元/人之間.
(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報價的取值范圍;
(2)求經(jīng)營這條旅游線路每月所需要的最低成本;
(3)當這條旅游線路的旅游報價為多少時,可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與x軸交于A、B兩點,頂點為C.
當A、B兩點的坐標分別為,時,求a、b滿足的關(guān)系式.
若該函數(shù)圖象的對稱軸是直線,且為等腰直角三角形.
①求該二次函數(shù)的解析式用只含a的式子表示;
②在范圍內(nèi)任取三個自變量、、,所對應(yīng)的三個函數(shù)值分別為、、,若以、、為長度的三條線段能圍成三角形,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩棵樹的高度分別為AB=6 m,CD=8 m,兩樹的根部間的距離AC=4 m,小強沿著正對這兩棵樹的方向從左向右前進,如果小強的眼睛與地面的距離為1.6 m,當小強與樹AB的距離小于多少時,就不能看到樹CD的樹頂D?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(a≠0)的圖象在第一象限交于A、B兩點,A點的坐標為(m,4),B點的坐標為(3,2),連接OA、OB,過B作BD⊥y軸,垂足為D,交OA于C.若OC=CA,
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)求△AOB的面積;
(3)在直線BD上是否存在一點E,使得△AOE是直角三角形,求出所有可能的E點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com