【題目】如圖,已知點A1 , A2 , …,An均在直線y=x﹣1上,點B1 , B2 , …,Bn均在雙曲線上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點An的橫坐標為an(n為正整數(shù)).若a1=﹣1,則a2015=

【答案】2
【解析】解:∵a1=﹣1,
∴B1的坐標是(﹣1,1),
∴A2的坐標是(2,1),
即a2=2,
∵a2=2,
∴B2的坐標是(2,﹣),
∴A3的坐標是(,﹣),
即a3=,
∵a3=,
∴B3的坐標是(,﹣2),
∴A4的坐標是(﹣1,﹣2),
即a4=﹣1,
∵a4=﹣1,
∴B4的坐標是(﹣1,1),
∴A5的坐標是(2,1),
即a5=2,
…,
∴a1 , a2 , a3 , a4 , a5 , …,每3個數(shù)一個循環(huán),分別是﹣1、、2,
∵2015÷3=671…2,
∴a2015是第672個循環(huán)的第2個數(shù),
∴a2015=2.
所以答案是:2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,過C點的切線CE垂直于弦AD于點E,連OD交AC于點F.
(1)求證:∠BAC=∠DAC;
(2)若AF:FC=6:5,求sin∠BAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與直線AB相交于A(﹣3,0),B(0,3)兩點.

(1)求這條拋物線的解析式;
(2)設(shè)C是拋物線對稱軸上的一動點,求使∠CBA=90°的點C的坐標;
(3)探究在拋物線上是否存在點P,使得△APB的面積等于3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點P從點E出發(fā)沿EA方向運動,連接PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當點P從點E運動到點A時,點F運動的路徑長是( 。

A.8
B.10
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程(a﹣1)x2﹣2x+2=0有實數(shù)根,則整數(shù)a的最大值為( 。
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的弦,CD是⊙O的直徑,CD⊥AB,垂足為E,且點E是OD的中點,⊙O的切線BM與AO的延長線相交于點M,連接AC,CM.

(1)若AB=4,求的長;(結(jié)果保留π)
(2)求證:四邊形ABMC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點M的坐標是(5,4),⊙M與y軸相切于點C,與x軸相交于A,B兩點.

(1)則點A,B,C的坐標分別是A( ,  ),B( ,  ),C(  ,  );
(2)設(shè)經(jīng)過A,B兩點的拋物線解析式為y=(x﹣5)2+k,它的頂點為E,求證:直線EA與⊙M相切;
(3)在拋物線的對稱軸上,是否存在點P,且點P在x軸的上方,使△PBC是等腰三角形?如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次連接△A1B1C1三邊中點,得△A2B2C2 , 再依次連接△A2B2C2的三邊中點得△A3B3C3 , …,則△A5B5C5的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(a+1,﹣+1)關(guān)于原點對稱的點在第四象限,則a的取值范圍在數(shù)軸上表示正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案