【題目】一家商店經(jīng)營一種玩具,進(jìn)價為每件50元,調(diào)查市場發(fā)現(xiàn)日銷售量y(件)是關(guān)于售價x(元/件)的一次函數(shù),相關(guān)數(shù)據(jù)如表,商店每天的總支出是600元.
售價(元/件) | 50 | 55 | 60 | 65 |
日銷售量y/件 | 80 | 70 | 60 | 50 |
(1)直接寫出y與x之間的函數(shù)關(guān)系式.(不要求寫出自變量x的取值范圍)
(2)商店在“五一”這天盡可能優(yōu)惠顧客,正好收支平衡(收入=支出),問當(dāng)天玩具的售價為多少元/件.
(3)商店最早需要多少天,純利可以突破萬元,玩具的售價應(yīng)定為多少元/件?(每天純利=每天的銷售額﹣成本﹣每天的支出)
【答案】(1)y﹣2x+180;(2)當(dāng)天玩具的售價為60元/件;(3)商店最早需要50天,純利可以突破萬元,玩具的售價應(yīng)定為70元/件.
【解析】
(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,把(50,80)和(60,60)代入即可得到結(jié)論;
(2)根據(jù)收入=支出列方程求解即可得到結(jié)論;
(3)設(shè)每天純利為W元,由題意得,W=(x﹣50)(﹣2x+180)﹣600=﹣2(x﹣70)2+200,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,
把(50,80)和(60,60)代入上式得,
,解得:,
∴y與x之間的函數(shù)關(guān)系式為:y﹣2x+180;
(2)根據(jù)題意得,(x﹣50)(﹣2x+180)=600,
解得:x1=60,x2=80,
∵盡可能優(yōu)惠顧客,∴x=60.
答:當(dāng)天玩具的售價為60元/件;
(3)設(shè)每天純利為W元,由題意得,
W=(x﹣50)(﹣2x+180)﹣600=﹣2(x﹣70)2+200,
即每件玩具的售價應(yīng)定為70元時,商店每天的純利最大,最大純利為200元,
∵10000÷200=50(天),
∴商店最早需要50天,純利可以突破萬元,玩具的售價應(yīng)定為70元/件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過C點的切線,垂足為D,AB的延長線交直線CD于點E.
(1)求證:AC平分∠DAB;
(2)若AB=6,B為OE的中點,CF⊥AB,垂足為點F,求CF的長;
(3)如圖②,連接OD交AC于點G,若=,求cosE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是線段AB上的一點,AB=6cm,O是AB外一定點.連接OP,將OP繞點O順時針旋轉(zhuǎn)120°得OQ,連接PQ,AQ.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段AP,PQ,AQ的長度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)對于點P在AB上的不同位置,畫圖、測量,得到了線段AP,PQ,AQ的長度(單位:cm)的幾組值,如下表:
在AP,PQ,AQ的長度這三個量中,確定________的長度是自變量,________的長度和________的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)AQ=PQ時,線段AP的長度約為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會活動,活動后,就活動的
5個主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選取最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完
整的統(tǒng)計圖,根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)在扇形統(tǒng)計圖中“進(jìn)取”部分扇形的圓心角是 度;
(4)若該校學(xué)生人數(shù)為800人,請根據(jù)上述調(diào)查結(jié)果,估計該校學(xué)生中“感恩”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的頂點為D,與x軸交點A,B的橫坐標(biāo)分別為﹣1,3,與y軸負(fù)半軸交于點C.下面五個結(jié)論:
①2a+b=0;
②4a+2b+c>0;
③對任意實數(shù)x,ax2+bx≥a+b;
④只有當(dāng)a=時,△ABD是等腰直角三角形;
⑤使△ABC為等腰三角形的a值可以有3個.
其中正確的結(jié)論有_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠B=60°.
(1)求∠ADC的度數(shù);
(2)求證:AE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;
②連接MN,分別交AB、AC于點D、O;
③過C作CE∥AB交MN于點E,連接AE、CD.
則四邊形ADCE的周長為( 。
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l:與直線,直線分別交于點A,B,直線與直線交于點.
(1)求直線與軸的交點坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為.
①當(dāng)時,結(jié)合函數(shù)圖象,求區(qū)域內(nèi)的整點個數(shù);
②若區(qū)域內(nèi)沒有整點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形OABC的直角頂點是坐標(biāo)原點,邊OA,OC分別在x軸,y軸的正半軸上.OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E,F分別是線段OA,AB上的兩個動點,且始終保持∠DEF=45°.設(shè)OE=x,AF=y,則y與x的函數(shù)關(guān)系式為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com