【題目】如圖,已知點A的坐標為(m,0),點B的坐標為(m﹣2,0),在x軸上方取點C,使CB⊥x軸,且CB=2AO,點C,C′關(guān)于直線x=m對稱,BC′交直線x=m于點E,若△BOE的面積為4,則點E的坐標為_____.
【答案】(﹣2,2)
【解析】如圖,設(shè)AE與CC′交于點D.
∵點A的坐標為(m,0),在x軸上方取點C,使CB⊥x軸,且CB=2AO,
∴CB=2m.
∵點C,C′關(guān)于直線x=m對稱,
∴CD=C′D,
∵ABCD是矩形,AB=CD,
∴AB=C′D.
又∵∠BAE=∠C′DE=90°,∠AEB=DEC′,
∴△ABE≌△DC′E,
∴AE=DE,
∴AE=AD=BC=m.
∵△BOE的面積為4,
∴ (2m)(m)=4,
整理得,m22m8=0,
解得m=4或2,
∵在x軸上方取點C,
∴2m>0,
∴m<0,
∴m=4不合題意舍去,
∵點E的坐標為(m,m),
∴點E的坐標為(2,2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知點A(4,0),B(2,0),若點C在一次函數(shù)y=x+2的圖象上,且△ABC為直角三角形,則滿足條件的點C有( )
A.4個B.2個C.3個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究發(fā)現(xiàn)
數(shù)學(xué)活動課上,小明說“若直線向左平移3個單位,你能求平移后所得直線所對應(yīng)函數(shù)表達式嗎?”
經(jīng)過一番討論,小組成員展示了他們的解答過程:
在直線上任取點,
向左平移3個單位得到點
設(shè)向左平移3個單位后所得直線所對應(yīng)的函數(shù)表達式為.
因為過點,
所以,
所以,
填空:所以平移后所得直線所對應(yīng)函數(shù)表達式為
(2)類比運用
已知直線,求它關(guān)于軸對稱的直線所對應(yīng)的函數(shù)表達式;
(3)拓展運用
將直線繞原點順時針旋轉(zhuǎn)90°,請直接寫出:旋轉(zhuǎn)后所得直線所對應(yīng)的函數(shù)表達式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于頻率與概率有下列幾種說法,其中正確的說法是( )
①“明天下雨的概率是90%”表示明天下雨的可能性很大;
②“拋一枚硬幣正面朝上的概率為”表示每拋兩次就有一次正面朝上;
③“拋一枚硬幣正面朝上的概率為”表示隨著拋擲次數(shù)的增加,“拋出正面朝上”這一事件發(fā)生的頻率穩(wěn)定在附近;
④“某彩票中獎的概率是1%”表示買100張該種彩票不可能中獎.
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,
(1)求證:△ABE≌△BCD;
(2)求出∠AFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期天,玲玲騎自行車到郊外游玩,她離家的距離與時間的關(guān)系如圖所示,請根據(jù)圖象回答下列問題.
(1)玲玲到達離家最遠的地方是什么時間?離家多遠?
(2)她何時開始第一次休息?休息了多長時間?
(3)她騎車速度最快是在什么時候?車速多少?
(4)玲玲全程騎車的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點E、F,若CE=2,連接CF.以下結(jié)論:①∠BAF=∠BCF; ②點E到AB的距離是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正確的有()
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人玩摸球游戲:一個不透明的袋子中裝有相同大小的3個球,球上分別標有數(shù)字1,2,3.首先,甲從中隨機摸出一個球,然后,乙從剩下的球中隨機摸出一個球,比較球上的數(shù)字,較大的獲勝.
(1)求甲摸到標有數(shù)字3的球的概率;
(2)這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應(yīng)點為點E),PE與CD相交于點O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設(shè)DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設(shè)DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結(jié)束】
25
【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進價分別為多少元?
(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com