【題目】感知:如圖,點E在正方形ABCDBC邊上,BF⊥AE于點FDG⊥AE于點G.可知△ADG≌△BAF.(不要求證明)

拓展:如圖,點BC∠MAN的邊AM、AN上,點E, F∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.

應(yīng)用:如圖,在等腰三角形ABC中,AB=AC,ABBC.點D在邊B上.CD=2BD.E, F在線段AD上.∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE△CDF的面積之和為_________.

【答案】拓展:證明見解析;應(yīng)用:6

【解析】

拓展:證明:如圖

∵∠1=∠2,∴∠BEA=∠AFC。

∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC

∴∠BAC=∠ABE+∠3。∴∠4=∠ABE。

∵∠AEB=∠AFC∠ABE=∠4,AB=AC

∴△ABE≌△CAFAAS)。

應(yīng)用:6

拓展:利用∠1=∠2=∠BAC,利用三角形外角性質(zhì)得出∠4=∠ABE,從而利用AAS證明△ABE≌△CAF。

應(yīng)用:首先根據(jù)△ABD△ADC等高,底邊比值為:12,得出△ABD△ADC面積比為:12,再證明△ABE≌△CAF,即可得出△ABE△CDF的面積之和為△ADC的面積得出答案即可:

如圖

在等腰三角形ABC中,AB=AC,CD=2BD

∴△ABD△ADC等高,底邊比值為:12

∴△ABD△ADC面積比為:12。

∵△ABC的面積為9,∴△ABD△ADC面積分別為:3,6。

∵∠1=∠2∴∠BEA=∠AFC。

∵∠1=∠ABE+∠3∠3+∠4=∠BAC,∠1=∠BAC

∴∠BAC=∠ABE+∠3。∴∠4=∠ABE

∵∠AEB=∠AFC,∠ABE=∠4,AB=AC∴△ABE≌△CAFAAS)。

∴△ABE△CAF面積相等,∴△ABE△CDF的面積之和為△ADC的面積。

∴△ABE△CDF的面積之和為6。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是∠ABC的平分線,DECB,交AB于點EA=45°,BDC=60°.BDE各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與直線 交于A、B兩點,點A在x軸上,點B的橫坐標(biāo)是2.點P在直線AB上方的拋物線上,過點P分別作PC∥y軸、PD∥x軸,與直線AB交于點C、D,以PC、PD為邊作矩形PCQD,設(shè)點Q的坐標(biāo)為(m,n).

(1)點A的坐標(biāo)是 , 點B的坐標(biāo)是;
(2)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(3)求m與n之間的函數(shù)關(guān)系式(不要求寫出自變量n的取值范圍);
(4)請直接寫出矩形PCQD的周長最大時n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太原市公共自行車的建設(shè)速度、單日租騎量等四項指標(biāo)穩(wěn)居全國首位.公共自行車車樁的截面示意圖如圖所示,AB⊥AD,AD⊥DC,點B,C在EF上,EF∥HG,EH⊥HG,AB=75cm,AD=24cm,BC=25cm,EH=4cm,則點A到地面的距離是 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.

(1)求證:CD為⊙O的切線;
(2)若CD=2AD,⊙O的直徑為20,求線段AC、AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x﹣4與x軸、y軸分別交于M、N兩點,⊙O的半徑為2,將⊙O以每秒1個單位的速度向右作平移運動,當(dāng)移動時間秒時,直線MN恰好與圓相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,兩個全等的等邊三角形的邊長為1m,一個微型機器人由A點開始按ABCDBEA的順序沿等邊三角形的邊循環(huán)運動,行走2012m停下,則這個微型機器人停在(

A.點A B.點B C.點C D.點E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有人;
(2)請你將條形統(tǒng)計圖補充完成;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D為AC邊上一點,∠DBC=∠A.

(1)求證:△BCD∽△ACB;
(2)如果BC= ,AC=3,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案