【題目】如圖,從樓AB的A處測得對面樓CD的頂部C的仰角為37°,底部D的俯角為45°,兩樓的水平距離BD為24 m,那么樓CD的高度約為________ m.(結(jié)果精確到1 m,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
【答案】42
【解析】
如下圖,過點A作AE⊥CD于E,結(jié)合已知條件易得四邊形ABDE是矩形,由此可得AE=AD=24米,這樣在Rt△ACE和Rt△AED中,結(jié)合已知條件解得CE和DE的長即可得到樓高CD的長度了.
過點A作AE⊥CD于點E,
∴∠AEC=∠AED=90°,
∵∠ABD=∠BDC=90°,
∴四邊形ABDE是矩形,
∴AE=BD=24m,
∵在Rt△ACE中,BD=AE=24 m,∠CAE=37°,
∴CE=AE·tan37°≈24×0.75=18(m).
∵在Rt△AED中,∠EAD=45°,
∴DE=AE=24 m,
∴CD=CE+DE≈18+24=42 (m).
故樓CD的高度大約為42 m.
故答案為:42.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD、CE是角平分線,AM⊥BD于點M,AN⊥CE于點N.△ABC的周長為30,BC=12.則MN的長是( )
A. 15B. 9C. 6D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知平行四邊形的三個頂點坐標(biāo)分別是O(0,0),A(-3,0),B(0,2),求平行四邊形第四個頂點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要建一個面積為150 m2的矩形養(yǎng)雞場,為了節(jié)約材料,養(yǎng)雞場的一邊沿用原來的一堵墻,墻長為a m,其余三邊用竹籬笆圍成,已知竹籬笆的長為35 m.
(1)如果a=40,那么養(yǎng)雞場的長和寬各為多少米?
(2)如果a是一個可以變化的量,那么墻的長度a對所建的養(yǎng)雞場有怎樣的影響?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點.
(1)求證:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)由大小相同的小立方塊搭成的幾何體如圖1,請在圖2的方格中畫出該幾何體的俯視圖和左視圖.
(2)用小立方體搭一個幾何體,使得它的俯視圖和左視圖與你在方格中所畫的一致,則這樣的幾何體最少要 個小立方塊,最多要 個小立方塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點A、O、B依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒4°的速度旋轉(zhuǎn),同時射線OB繞點O沿逆時針方向以每秒6°的速度旋轉(zhuǎn),直線MN保持不動,如圖2,設(shè)旋轉(zhuǎn)時間為t(0≤t≤60,單位:秒).
(1)當(dāng)t=3時,求∠AOB的度數(shù);
(2)在運動過程中,當(dāng)∠AOB第二次達(dá)到72°時,求t的值;
(3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB與射線OA垂直?如果存在,請求出t的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】選擇適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)3(x+1)2=27; (2)2x2+6=7x;
(3)3x(x-2)=2(2-x); (4)y2-4y-3=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com