【題目】已知:如圖,以等邊的邊為直徑作,分別交于點,,過點于點

1)求證:的切線;

2)若等邊的邊長為8,求由、、圍成的陰影部分面積.

【答案】1)詳見解析;(26

【解析】

1)連接CD、OD,先利用等腰三角形的性質(zhì)證ADBD,再證ODABC的中位線得DOAC,根據(jù)DFAC可得結論;

2)連接OE,作OGAC,求出EF、DF的長及∠DOE的度數(shù),根據(jù)S陰影S梯形EFDOS扇形DOE計算可得.

解:(1)連接CD、OD

BC是⊙O的直徑,

∴∠CDB=90°,即CDAB,

又∵△ABC是等邊三角形,

AD=BD,

BO=CO,

DOABC的中位線,

ODAC,

DFAC,

DFOD,

DF是⊙O的切線;

2)連接OE,作OGAC于點G,

∴∠OGF=DFG=ODF=90°

∴四邊形OGFD是矩形,

FG=OD=4

OC=OE=OD=OB,且∠ACB=B=60°

∴△OBDOCE均為等邊三角形,

∴∠BOD=COE=60°CE=OC=4,

EG=CE=2DF=OG=OCsin60°=2,∠DOE=60°,

EF=FGEG=2

S陰影S梯形EFDOS扇形DOE=×2+4×2=6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(發(fā)現(xiàn)問題)愛好數(shù)學的小明在做作業(yè)時碰到這樣的一道題目:

如圖①,點O為坐標原點,⊙O的半徑為1,點A(2,0).動點B在⊙O上,連結AB,作等邊△ABC(A,B,C為順時針順序),求OC的最大值

(解決問題)小明經(jīng)過多次的嘗試與探索,終于得到解題思路:在圖①中,連接OB,以OB為邊在OB的左側作等邊三角形BOE,連接AE.

(1)請你找出圖中與OC相等的線段,并說明理由;

(2)求線段OC的最大值.

(靈活運用)

(3)如圖②,在平面直角坐標系中,點A的坐標為(2,0),點B的坐標為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,求線段AM長的最大值及此時點P的坐標.

(遷移拓展)

(4)如圖③,BC=4,點D是以BC為直徑的半圓上不同于B、C的一個動點,以BD為邊作等邊△ABD,請直接寫出AC的最值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,CGAB于點G,∠ABF45°FCD上,BFCG于點E,連接AE,且AEAD

1)若BG2,BC,求EF的長度;

2)求證:CE+BEAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°ACBC,點GAC中點,連結BG,CEBGF,交ABE,連接GE,點HAB中點,連接FH.以下結論:(1)∠ACE=∠ABG;(2)∠AGE=∠CGB:(3)若AB10,則BF4;(4FH平分∠BFE;(5SBGC3SCGE.其中正確結論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點O,點EOA的中點,連接BE并延長交AD于點F,已知SAEF=4,則下列結論:①SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線yx+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點POA上一動點,PCPD值最小時點P的坐標為.

A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校共有200名學生,為了解本學期學生參加公益勞動的情況,收集了他們參加公益勞動時間(單位:小時)等數(shù)據(jù),以下是根據(jù)數(shù)據(jù)繪制的統(tǒng)計圖表的一部分.

人數(shù)

時間

性別

7

31

25

30

4

8

29

26

32

8

學段

初中

25

36

44

11

高中

下面有四個推斷:

①這200名學生參加公益勞動時間的平均數(shù)一定在24.5-25.5之間

②這200名學生參加公益勞動時間的中位數(shù)在20-30之間

③這200名學生中的初中生參加公益勞動時間的中位數(shù)一定在20-30之間

④這200名學生中的高中生參加公益勞動時間的中位數(shù)可能在20-30之間

所有合理推斷的序號是(

A. ①③B. ②④C. ①②③D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,,相切于點,、是正方形與圓的另兩個交點.

1__________,圓心到直線的距離為__________

2)求的半徑長和的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點

1)求的值和圖象的頂點坐標;

2)點在該二次函數(shù)圖象上.

①當時,求的值;

②若點軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍;

③直接寫出點與直線的距離小于的取值范圍.

查看答案和解析>>

同步練習冊答案