如圖,等邊三角形ΔOPQ的邊長(zhǎng)為2,Q在x軸正半軸上,若反比例函數(shù)經(jīng)過(guò)點(diǎn)P,
則k=________.

解析試題分析:由題意可知等邊三角形中,P的橫坐標(biāo)即是1,縱坐標(biāo)是點(diǎn)P到底邊的距離=
所以點(diǎn)P(1,)所以代入該函數(shù)可得k=
考點(diǎn):代數(shù)式求值
點(diǎn)評(píng):本題是屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握代數(shù)式求值的方法,即可完成.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊三角形ABC的邊長(zhǎng)為3,點(diǎn)P、Q分別是AB、BC上的動(dòng)點(diǎn)(點(diǎn)P、Q與三角形ABC的頂點(diǎn)不精英家教網(wǎng)重合),且AP=BQ,AQ、CP相交于點(diǎn)E.
(1)如設(shè)線段AP為x,線段CP為y,求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(2)當(dāng)△CBP的面積是△CEQ的面積的2倍時(shí),求AP的長(zhǎng);
(3)點(diǎn)P、Q分別在AB、BC上移動(dòng)過(guò)程中,AQ和CP能否互相垂直?如能,請(qǐng)指出P點(diǎn)的位置;如不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,若順次連接四邊形ABCD各邊中點(diǎn)所得四邊形EFGH是菱形,則稱原四邊形ABCD為“中母菱形”.定義:若四邊形的對(duì)角線相等,那么這個(gè)四邊形是中母菱形.
(1)請(qǐng)寫一個(gè)你學(xué)過(guò)的特殊四邊形中是中母菱形的圖形的名稱.
(2)如圖有等邊三角形ABC中,D、E分別是AB、AC的中點(diǎn),連接DE,猜想圖中哪個(gè)四邊形是中母菱形,并加以證明.
(3)在等邊三角形ABC中,若D、E不是AB、AC的中點(diǎn),且BD=AE,探究滿足上述條件的圖形中是否在中母菱形,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等邊三角形ABC內(nèi)有一點(diǎn)P,過(guò)點(diǎn)P向三邊作垂線,垂足分別為S、Q、R,且PQ=6,PR=8,PS=10,則△ABC的面積等于( 。
A、190
3
B、192
3
C、194
3
D、196
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊三角形ABC中,D、E分別在AB、BC邊上,且AD=BE,AE與CD交于點(diǎn)F,AG⊥CD于點(diǎn)G.下列結(jié)論:①AE=CD;②∠AFC=120°;③△ADF是正三角形;④
FG
AF
=
1
2
.其中正確的結(jié)論是
①②④
①②④
(填所有正確答案的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖把等邊三角形各邊4等分,分別連接對(duì)應(yīng)點(diǎn),試計(jì)算圖中所有的三角形個(gè)數(shù)是
27
27

查看答案和解析>>

同步練習(xí)冊(cè)答案