(2010•瀘州)已知⊙O1與⊙O2的半徑分別為2和3,若兩圓相交,則兩圓的圓心距m滿足( )
A.m=5
B.m=1
C.m>5
D.1<m<5
【答案】分析:本題根據(jù)兩圓半徑之和與圓心距之間的數(shù)量關(guān)系和兩圓位置關(guān)系的聯(lián)系即可求解.
外離,則P>R+r;外切,則P=R+r;相交,則R-r<P<R+r;內(nèi)切,則P=R-r;內(nèi)含,則P<R-r.
(P表示圓心距,R,r分別表示兩圓的半徑).
解答:解:∵兩圓相交,
∴3-2<m<3+2,即
1<m<5.
故選D.
點(diǎn)評(píng):此題主要是考查圓與圓的位置關(guān)系與數(shù)量關(guān)系間的聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•瀘州)已知二次函數(shù)y1=x2-2x-3及一次函數(shù)y2=x+m.
(1)求該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)以及它與x軸的交點(diǎn)坐標(biāo);
(2)將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象.請(qǐng)你在圖中畫出這個(gè)新圖象,并求出新圖象與直線y2=x+m有三個(gè)不同公共點(diǎn)時(shí)m的值;
(3)當(dāng)0≤x≤2時(shí),函數(shù)y=y1+y2+(m-2)x+3的圖象與x軸有兩個(gè)不同公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省瀘州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•瀘州)已知二次函數(shù)y1=x2-2x-3及一次函數(shù)y2=x+m.
(1)求該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)以及它與x軸的交點(diǎn)坐標(biāo);
(2)將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象.請(qǐng)你在圖中畫出這個(gè)新圖象,并求出新圖象與直線y2=x+m有三個(gè)不同公共點(diǎn)時(shí)m的值;
(3)當(dāng)0≤x≤2時(shí),函數(shù)y=y1+y2+(m-2)x+3的圖象與x軸有兩個(gè)不同公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省瀘州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•瀘州)已知O為圓錐的頂點(diǎn),M為圓錐底面上一點(diǎn),點(diǎn)P在OM上.一只蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時(shí)所爬過(guò)的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開(kāi)并展開(kāi),所得側(cè)面展開(kāi)圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省日照市中考數(shù)學(xué)模擬試卷6(葛長(zhǎng)嶺)(解析版) 題型:選擇題

(2010•瀘州)已知O為圓錐的頂點(diǎn),M為圓錐底面上一點(diǎn),點(diǎn)P在OM上.一只蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時(shí)所爬過(guò)的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開(kāi)并展開(kāi),所得側(cè)面展開(kāi)圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案