【題目】如圖,正方形ABCD與正方形EFGH是位似形,已知A0,5),D0,3),E01),H0,4),則位似中心的坐標是_____

【答案】0, ),(6,7).

【解析】由圖可得:B(-2,5),C(-2,3),F3,1),

B、F是對應點時,E、A是對應點,故位似中心位于直線BFy軸的交點處,

設(shè)直線BF的解析式為:y=kx+b

,

解得,

∴直線BF的解析式是:y=x+

x=0時,y=,

∴位似中心是(0, );

C、E是對應點時,D、F是對應點,故位似中心位于直線CE與直線DF的交點處,

設(shè)直線CE的解析式為:y=ax+c,

,

解得

∴直線CE的解析式是:y=x+1,

設(shè)直線DF的解析式為:y=dx+e,

,

解得,

∴直線DF的解析式是:y=x+3,

,

解得: ,

∴位似中心是(-6,7);

故答案為(0 ),(-6,7).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】北方某水果商店從南方購進一種水果,其進貨成本是每噸0.4萬元,根據(jù)市場調(diào)查這種水果在北方市場上的銷售量y(噸)與每噸的銷售價x(萬元)之間的函數(shù)關(guān)系如下圖所示:

1)求出銷售量y與每噸銷售價x之間的函數(shù)關(guān)系式;

2)如果銷售利潤為w(萬元),請寫出wx之間的函數(shù)關(guān)系式;

3)當每噸銷售價為多少萬元時,銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D在反比例函數(shù)y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3),過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=

(1)求反比例函數(shù)y=和直線y=kx+b的解析式;

(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;

(3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA于點M,求∠BMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設(shè)備共8臺,用于同時治理不同成分的污水,若購買A2臺、B3臺需54萬,購買A4臺、B2臺需68萬元.

1)求出A型、B型污水處理設(shè)備的單價;

2)經(jīng)核實,一臺A型設(shè)備一個月可處理污水220噸,一臺B型設(shè)備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為坐標原點,拋物線y=ax22ax+x軸交于點AB(點A在點B的左側(cè)),拋物線的頂點為C,直線ACy軸于點D,DAC的中點.

(1)如圖1,求拋物線的頂點坐標;

(2)如圖2,點P為拋物線對稱軸右側(cè)上的一動點,過點PPQAC于點Q,設(shè)點P的橫坐標為t,點Q的橫坐標為m,求mt的函數(shù)關(guān)系式;

(3)在(2)的條件下,如圖3,連接AP,過點CCEAP于點E,連接BE、CE分別交PQF、G兩點,當點FPG中點時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,貴陽市某中學數(shù)學活動小組在學習了利用三角函數(shù)測高后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂?shù)难鼋菫?/span>30°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點EA,C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,.

1)如果分別是、的中點,是對角線上的點,,則的長為________;

2)如果分別是上的點,,是對角線上的點.下列判斷正確的是_____

①在上存在無數(shù)組,,使得四邊形是平行四邊形;

②在上存在無數(shù)組,,使得四邊形是矩形;

③在上存在無數(shù)組,,使得四邊形是菱形;

④當時,存在、、,使得四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°AB=3AC=4,P為邊BC上一動點,PEABE,PFACF,則EF的最小值為(

A.2B.2.2C.2.4D.2.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,觀察每個正多邊形中的變化情況,解答下列問題:

……

(1)將下面的表格補充完整:

正多邊形的邊數(shù)

3

4

5

6

……

的度數(shù)

_________

_________

_________

_________

……

_________

(2)根據(jù)規(guī)律,是否存在一個正邊形,使其中的?若存在,寫出的值;若不存在,請說明理由.

(3)根據(jù)規(guī)律,是否存在一個正邊形,使其中的?若存在,寫出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案