已知:一元二次方程kx2+4x+4=0(k≠0),當k為何值時方程有兩個相等的實數(shù)根( 。
A、k=
1
2
B、k=-
1
2
C、k=1
D、k=-1
分析:判斷一元二次方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了.若方程有兩個相等的實數(shù)根,則判別式為0.
解答:解:∵方程有兩個相等的實數(shù)根,
而a=k,b=4,c=4,
∴△=b2-4ac=42-4×k×4=0,
解得k=1.
故選C.
點評:總結一元二次方程根的情況與判別式△的關系:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根;
(3)△<0?方程沒有實數(shù)根.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

10、已知關于x一元二次方程ax2+bx+c=0有一個根為1,則a+b+c=
0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•婁底)已知:一元二次方程
1
2
x2+kx+k-
1
2
=0.
(1)求證:不論k為何實數(shù)時,此方程總有兩個實數(shù)根;
(2)設k<0,當二次函數(shù)y=
1
2
x2+kx+k-
1
2
的圖象與x軸的兩個交點A、B間的距離為4時,求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線的頂點為C,過y軸上一點M(0,m)作y軸的垂線l,當m為何值時,直線l與△ABC的外接圓有公共點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如下一元二次方程:
第1個方程:3x2+2x-1=0;
第2個方程:5x2+4x-1=0;
第3個方程:7x2+6x-1=0;

按照上述方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項的排列規(guī)律,則第8個方程為
17x2 +16x-1=0
17x2 +16x-1=0
;第n(n為正整數(shù))個方程為
(2n+1)x2 +2nx-1=0
(2n+1)x2 +2nx-1=0
,其兩個實數(shù)根為
x1=-1,x2=
1
2n+1
x1=-1,x2=
1
2n+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一個一元二次方程的兩根分別為x1=1,x2=-2,請你寫出符合這兩個根的一個一元二次方程:
x2+x-2=0(答案不唯一).
x2+x-2=0(答案不唯一).

查看答案和解析>>

同步練習冊答案