【題目】已知:在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O為圓心,OA長為半徑的圓與AC、AB分別交于點(diǎn)D、E,且∠CBD=∠A.
(1)觀察圖形,猜想BD與⊙O的位置關(guān)系;
(2)證明第(1)題的猜想
【答案】(1)相切;(2)詳見解析.
【解析】
(1)觀察圖形,可得BD與⊙O的位置關(guān)系:相切;
(2)首先連接OD,由AE是⊙O的直徑,在Rt△ABC中,∠C=90°,易證得DE∥BC,又由∠CBD=∠A,可證得∠ODE+∠EDB=90°,即可證得結(jié)論.
(1)解:相切.
(2)證明:連接OD,
∵AE是⊙O的直徑,
∴∠ADE=90°,
∴∠A+∠AED=90°,
∵∠C=90°,
∴∠ADE=∠C,
∴DE∥BC,
∴∠EDB=∠CBD,
∵∠CBD=∠A,
∴∠EDB=∠A,
∵OD=OE,
∴∠ODE=∠OED,
∴∠ODE+∠EDB=90°,
即OD⊥BD,
∴BD與⊙O的位置關(guān)系是相切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列兩則材料,回答問題:
材料一:平面直角坐標(biāo)系中,對點(diǎn)A(x1,y1),B(x2,y2)定義一種新的運(yùn)算:AB=x1x2+y1y2.
例如:若A(1,2),B(3,4),則AB=1×3+2×4=11
材料二:平面直角坐標(biāo)系中,過橫坐標(biāo)不同的兩點(diǎn)A(x1,y1),B(x2,y2)的直線的斜率為kAB=.由此可以發(fā)現(xiàn)若kAB==1,則有y1-y2=x1-x2,即x1-y1=x2-y2.反之,若x1,x2,y1,y2滿足關(guān)系式x1-y1=x2-y2,則有y1-y2=x1-x2,那么kAB=═1.
(1)已知點(diǎn)M(-4,6),N(3,2),則MN=______,若點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2)(x1≠x2),且滿足關(guān)系式x1+y1=x2+y2,那么kAB=______;
(2)橫坐標(biāo)互不相同的三個點(diǎn)C,D,E滿足CD=DE,且D點(diǎn)的坐標(biāo)為(2,2),過點(diǎn)D作DF∥y軸,交直線CE于點(diǎn)F,若DF=8,請結(jié)合圖象,求直線CE與坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問題:
一百饅頭一百僧,大僧三個更無爭,
小僧三人分一個,大小和尚得幾。
意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,下列求解結(jié)果正確的是( )
A. 大和尚25人,小和尚75人 B. 大和尚75人,小和尚25人
C. 大和尚50人,小和尚50人 D. 大、小和尚各100人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊軸,垂足為點(diǎn),頂點(diǎn)在第二象限,頂點(diǎn)在軸的正半軸上,反比例函數(shù)的圖象同時經(jīng)過頂點(diǎn)、,若點(diǎn)的橫坐標(biāo)為5,,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)G是△ABC的重心,CG的延長線交AB于D,GA=5,GC=4,GB=3,將△ADG繞點(diǎn)D順時針方向旋轉(zhuǎn)180°得到△BDE,則△EBC的面積=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 先化簡,再求值:
(1)[x2+y2﹣(x+y)2+2x(x﹣y)]÷4x,其中x﹣2y=2
(2)(mn+2)(mn﹣2)﹣(mn﹣1)2,其中m=2,n=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是( )
A. (4n﹣1,)B. (2n﹣1,)C. (4n+1,)D. (2n+1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為做好漢江防汛工作,防汛指揮部決定對一段長為2500m重點(diǎn)堤段利用沙石和土進(jìn)行加固加寬.專家提供的方案是:使背水坡的坡度由原來的1:1變?yōu)?/span>1:1.5,如圖,若CD∥BA,CD=4米,鉛直高DE=8米.
(1)求加固加寬這一重點(diǎn)堤段需沙石和土方數(shù)是多少?
(2)某運(yùn)輸隊(duì)承包這項(xiàng)沙石和土的運(yùn)送工程,根據(jù)施工方計劃在一定時間內(nèi)完成,按計劃工作5天后,增加了設(shè)備,工效提高到原來的1.5倍,結(jié)果提前了5天完成任務(wù),問按原計劃每天需運(yùn)送沙石和土多少m3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數(shù)y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點(diǎn),點(diǎn)P是拋物線上不與A,B重合的一個動點(diǎn),點(diǎn)Q是y軸上的一個動點(diǎn).
(1)請直接寫出a,k,b的值及關(guān)于x的不等式ax2<kx﹣2的解集;
(2)當(dāng)點(diǎn)P在直線AB上方時,請求出△PAB面積的最大值并求出此時點(diǎn)P的坐標(biāo);
(3)是否存在以P,Q,A,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com