如圓,AB是⊙O的直徑,直線PQ過(guò)⊙O上的點(diǎn)C,PQ是⊙O的切線.
(1)求證:∠BCP=∠A;
(2)如果AB是⊙O的弦(不是直徑),這個(gè)結(jié)論還成立嗎?試說(shuō)明.

【答案】分析:(1)連接OC,滿足切線的性質(zhì)定理.再根據(jù)直徑所對(duì)的邊是直角就可以證出結(jié)論.
(2)這個(gè)結(jié)論還成立;過(guò)C點(diǎn)作直徑CD,連接BD,則∠A=∠D,再由PQ是⊙O的切線∠DCB+∠BCP=90°,∠BCP=∠A.
解答:(1)證明:連接OC   (1分)
PQ是⊙O的切線
∴OC⊥PQ
∴∠OCB+∠BCP=90°(2分)
∵OB=OC
∴∠OBC=∠OCB    (3分)
∵AB是⊙O的直徑
∴∠ACB=90°
∴∠OBC+∠A=90°
∴∠BCD=∠A    (4分)

(2)解:如果AB是⊙O的弦(不是直徑),這個(gè)結(jié)論還成立(5分)
理由為:過(guò)C點(diǎn)作直徑CD,連接BD,則∠A=∠D,∠DBC=90°
∴∠D+∠DCB=90°(6分)
∵PQ是⊙O的切線
∴OC⊥PQ
∴∠DCB+∠BCP=90°(7分)
∴∠BCP=∠D
∴∠BCP=∠A    (8分)
點(diǎn)評(píng):本題主要考查了圓的切線的性質(zhì)定理,以及圓的直徑所對(duì)的圓周角是直角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-
3
3
x+2與y軸的交點(diǎn)A和點(diǎn)M(-
3
2
,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的精英家教網(wǎng)四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》中考題集(38):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第27章《二次函數(shù)》中考題集(37):27.3 實(shí)踐與探索(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年四川省眉山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•眉山)如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案