把二次函數(shù)y=ax2+bx+c的圖像向左平移4個單位或向右平移1個單位后都會經(jīng)過原點,則二次函數(shù)圖像的對稱軸與x軸的交點是
A.(-2.5,0)B.(2.5,0)C.(-1.5,0)D.(1.5,0)
D.

試題分析:∵y=ax2+bx+c=a(x+2+,
∴二次函數(shù)y=ax2+bx+c的圖象向左平移4個單位得到y(tǒng)=a(x++4)2+
將原點(0,0)代入,得a(+4)2+=0,
整理,得16a+4b+c=0①.
二次函數(shù)y=ax2+bx+c的圖象向右平移1個單位得到y(tǒng)=a(x+-1)2+,
將原點(0,0)代入,得a(-1)2+=0,
整理,得a-b+c=0②.
①-②,得15a+5b=0,b=-3a,
∴-=-=1.5,
∴二次函數(shù)y=ax2+bx+c圖象的對稱軸與x軸的交點是(1.5,0).
故選D.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線l的解析式為,拋物線y = ax2+bx+2經(jīng)過點A(m,0),B(2,0),D 三點.
(1)求拋物線的解析式及A點的坐標,并在圖示坐標系中畫出拋物線的大致圖象;
(2)已知點 P(x,y)為拋物線在第二象限部分上的一個動點,過點P作PE垂直x軸于點E, 延長PE與直線l交于點F,請你將四邊形PAFB的面積S表示為點P的橫坐標x的函數(shù), 并求出S的最大值及S最大時點P的坐標;
(3)將(2)中S最大時的點P與點B相連,求證:直線l上的任意一點關(guān)于x軸的對稱點一定在PB所在直線上.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)的圖象與軸交于兩點,與軸交于點,已知點(-1,0),點C(0,-2).
(1)求拋物線的函數(shù)解析式;
(2)試探究的外接圓的圓心位置,并求出圓心坐標;
(3)此拋物線上是否存在點P,使得以P、A、C、B為頂點的四邊形為梯形.若存在,請寫出所有符合條件的P點坐標;若不存在,請說明理由;
(4)若點是線段下方的拋物線上的一個動點,求面積的最大值以及此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線的圖象過點C(0,1),頂點為Q(2,3)點D在x軸正半軸上,且線段OD=OC
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線交坐標軸于A、B、D三點,過點D作軸的平行線交拋物線于點C.直線l過點E(0,-),且平分梯形ABCD面積.
⑴ 直接寫出A、B、D三點的坐標;
⑵ 直接寫出直線l的解析式;
⑶ 若點P在直線l上,且在x軸上方,tan∠OPB=,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)的圖象與x軸的一個交點為(1,0),則它與x軸的另一個交點坐標是
A.(1,0)B.(-1,0)C.(2,0)D.(-2,0)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,拋物線經(jīng)過平移得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分的面積為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=-x2+2x+3的頂點坐標是(  )
A.(-1,4) B.(1,3) C.(-1,3) D.(1,4)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

甲、乙兩位同學對問題“求代數(shù)式的最小值”提出各自的想法.甲說:“可以利用已經(jīng)學過的完全平方公式,把它配方成,所以代數(shù)式的最小值為-2”.乙說:“我也用配方法,但我配成,最小值為2”.你認為(    )
A.甲對B.乙對C.甲、乙都對D.甲乙都不對

查看答案和解析>>

同步練習冊答案