【題目】如圖,在RtABC中,ACB=90°,點(diǎn)D、F分別在AB、AC上,CF=CB,連接CD,將線(xiàn)段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得CE,連接EF.

(1)求證:BCD≌△FCE;

(2)若EFCD,求BDC的度數(shù).

【答案】(1)證明見(jiàn)解析;(2)90°

【解析】

試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得CE=CD,DCE=90°,則利用等角的余角相等可得ECF=BCD,于是可根據(jù)“SAS”判斷BCD≌△FCE

2)根據(jù)2平行線(xiàn)的性質(zhì)得CEF+DCE=180°,加上DCE=90°,所以CEF=90°,于是得到BDC=90°

試題解析:(1線(xiàn)段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得CE

CE=CD,DCE=90°,

∵∠ACB=90°,

∴∠ECF=BCD

BCDFCE

∴△BCD≌△FCE,

2EFCD,

∴∠CEF+DCE=180°,

DCE=90°,

∴∠CEF=90°

∴∠BDC=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,-2).

(1)求反比例函數(shù)的解析式;

(2)觀(guān)察圖象,直接寫(xiě)出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;

(3)若雙曲線(xiàn)上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)54米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為2米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭(zhēng)議的情境:請(qǐng)根據(jù)上面的信息,解決問(wèn)題:

1)設(shè)ABx米(x0),試用含x的代數(shù)式表示BC的長(zhǎng);

2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(1,5)所在的象限是(

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)P(x,y)的坐標(biāo)滿(mǎn)足|x|=5,y2=9,且xy>0,則點(diǎn)P的坐標(biāo)為( )

A. (5,3)或(-5,3) B. (5,3)或(-5,-3)

C. (-5,3)或(5,-3) D. (-5,3)或(-5,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果直線(xiàn)y=-3x+m不經(jīng)過(guò)第三象限,那么m的取值范圍是 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解九年級(jí)學(xué)生的投籃命中率,組織了九年級(jí)學(xué)生定點(diǎn)投籃,規(guī)定每人投籃3次.現(xiàn)對(duì)九年級(jí)(1)班每名學(xué)生投中的次數(shù)進(jìn)行統(tǒng)計(jì),繪制成如下的兩幅統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,回答下列問(wèn)題.

(1)九年級(jí)(1)班的學(xué)生人數(shù)m= 人,扇形統(tǒng)計(jì)圖中n= %;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中“3次”對(duì)應(yīng)的圓心角的度數(shù)為 °;

(4)若九年級(jí)有學(xué)生900人,估計(jì)投中次數(shù)在2次以上(包括2次)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=﹣x+b圖象經(jīng)過(guò)點(diǎn)(2,﹣4),則b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每千克40元,銷(xiāo)售單價(jià)與月銷(xiāo)售量的關(guān)系如下(每千克售價(jià)不能高于65元):

該商品以每千克50元為售價(jià),在此基礎(chǔ)上設(shè)每千克的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷(xiāo)售量為y件.

(1)直接寫(xiě)出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)設(shè)利潤(rùn)為Z元,每千克商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷