【題目】如圖,菱形ABCD中,E,F分別為AD,AB上的點(diǎn),且AE=AF,連接EF并延長,交CB的延長線于點(diǎn)G,連接BD.
(1) 求證:四邊形EGBD是平行四邊形;
(2) 連接AG,若∠FGB=,GB=AE=3,求AG的長.
【答案】(1)見解析;(2).
【解析】
(1)依據(jù)菱形的性質(zhì)及等式的性質(zhì),得,,由平行得∽,依據(jù)相似的性質(zhì)得到,從而,依據(jù)一組對邊平行且相等的四邊形是平行四邊形得到四邊形EGBD是平行四邊形;
(2)先結(jié)合條件求得=3,,由等邊對等角得到,依據(jù)三角形外角的性質(zhì)得到,作于,運(yùn)用銳角三角函數(shù)求出,再求出,最后用勾股定理求出AG的長.
解:(1) 證明:∵菱形ABCD,
∴,,
又∵AE=AF,
∴,即,∽,
∴,
∴,
又∵,
∴四邊形EGBD是平行四邊形;
(2) ∵,GB=AE=3,AE=AF,
∴=3,
∴,
∴,
作于,
則=,=3,則,
==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“2019大洋灣鹽城馬拉松”的賽事共有三項(xiàng):A,“全程馬拉松”、B,“半程馬拉松”、C.“迷你健身跑”,小明和小剛參與了該項(xiàng)賽事的志愿者服務(wù)工作,組委會隨機(jī)將志愿者分配到三個項(xiàng)目組.
(1)小明被分配到“迷你健身跑”項(xiàng)目組的概率為 ;
(2)求小明和小剛被分配到不同項(xiàng)目組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰中,,.動點(diǎn)在上以每分鐘5個單位長度的速度從點(diǎn)出發(fā)向點(diǎn)移動,過作交邊于點(diǎn),連結(jié)、.設(shè)點(diǎn)移動的時間為.
(1)求、兩點(diǎn)的坐標(biāo);
(2)計算:當(dāng)面積最大時,的值;
(3)在(2)的條件下,邊上是否還存在一個點(diǎn),使得?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖①,正方形中,點(diǎn)在邊上,平分.若我們分別延長與,交于點(diǎn),則易證.(不需要證明)
(探究)如圖②,在矩形中,點(diǎn)在邊的中點(diǎn),點(diǎn)在邊上,平分.求證:.
(應(yīng)用)在(探究)的條件下,若,,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在第二問的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,DEF分別為△ABC邊ACABBC上的點(diǎn),∠A=∠1=∠C,DE=DF.下面的結(jié)論一定成立的是( )
A. AE=FC B. AE=DE C. AE+FC=AC D. AD+FC=AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決問題.
學(xué)校要購買A,B兩種型號的足球,按體育器材門市足球銷售價格(單價)計算:若買2個A型足球和3個B型足球,則要花費(fèi)370元,若買3個A型足球和1個B型足球,則要花費(fèi)240元.
(1)求A,B兩種型號足球的銷售價格各是多少元/個?
(2)學(xué)校擬向該體育器材門市購買A,B兩種型號的足球共20個,且費(fèi)用不低于1300元,不超過1500元,則有哪幾種購球方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com