【題目】已知RtABC,∠BAC90°,點(diǎn)DBC中點(diǎn),ADAC,BC4,過(guò)A,D兩點(diǎn)作⊙O,交AB于點(diǎn)E,

1)求弦AD的長(zhǎng);

2)如圖1,當(dāng)圓心OAB上且點(diǎn)M是⊙O上一動(dòng)點(diǎn),連接DMAB于點(diǎn)N,求當(dāng)ON等于多少時(shí),三點(diǎn)D、E、M組成的三角形是等腰三角形?

3)如圖2,當(dāng)圓心O不在AB上且動(dòng)圓⊙ODB相交于點(diǎn)Q時(shí),過(guò)DDHAB(垂足為H)并交⊙O于點(diǎn)P,問(wèn):當(dāng)⊙O變動(dòng)時(shí)DPDQ的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說(shuō)明理由.

【答案】1

2)當(dāng)ON等于11時(shí),三點(diǎn)D、E、M組成的三角形是等腰三角形

3)不變,理由見(jiàn)解析

【解析】

1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得到AD的長(zhǎng);
2)連DE、ME,易得當(dāng)EDEM為等腰三角形EDM的兩腰,根據(jù)垂徑定理得推論得OEDM,易得到ADC為等邊三角形,得∠CAD=60°,則∠DAO=30°,∠DON=60°,然后根據(jù)含30°的直角三角形三邊的關(guān)系得DN=AD=ON=DN=1;
當(dāng)MD=ME,DE為底邊,作DHAE,由于AD=2,∠DAE=30°,得到DH=,∠DEA=60°,DE=2,于是OE=DE=2OH=1,
又∠M=DAE=30°MD=ME,得到∠MDE=75°,則∠ADM=90°-75°=15°,可得到∠DNO=45°,根據(jù)等腰直角三角形的性質(zhì)得到NH=DH=,則ON=-1
3)連AP、AQ,DPAB,得ACDP,則∠PDB=C=60°,再根據(jù)圓周角定理得∠PAQ=PDB,∠AQC=P,則∠PAQ=60°,∠CAQ=PAD,易證得AQC≌△APD,得到
DP=CQ,則DP-DQ=CQ-DQ=CD,而ADC為等邊三角形,CD=AD=2,即可得到DP-DQ的值.

解:(1)∵∠BAC90°,點(diǎn)DBC中點(diǎn),BC4

ADBC;

2)連DE、ME,如圖,∵DMDE,

當(dāng)EDEM為等腰三角形EDM的兩腰,

OEDM,

又∵ADAC,

∴△ADC為等邊三角形,

∴∠CAD60°

∴∠DAO30°,

∴∠DON60°

RtADN中,DNAD

RtODN中,ONDN1

∴當(dāng)ON等于1時(shí),三點(diǎn)D、EM組成的三角形是等腰三角形;

當(dāng)MDME,DE為底邊,如圖3,作DHAE,

AD2,∠DAE30°,

DH,∠DEA60°,DE2,

∴△ODE為等邊三角形,

OEDE2,OH1,

∵∠M=∠DAE30°,

MDME

∴∠MDE75°,

∴∠ADM90°75°15°

∴∠DNO45°,

∴△NDH為等腰直角三角形,

NHDH,

ON1

綜上所述,當(dāng)ON等于11時(shí),三點(diǎn)D、E、M組成的三角形是等腰三角形;

3)當(dāng)⊙O變動(dòng)時(shí)DPDQ的值不變,DPDQ2.理由如下:

AP、AQ,如圖2,

∵∠C=∠CAD60°,

DPAB,

ACDP

∴∠PDB=∠C60°,

又∵∠PAQ=∠PDB

∴∠PAQ60°,

∴∠CAQ=∠PAD,

ACAD,∠AQC=∠P

∴△AQC≌△APD,

DPCQ

DPDQCQDQCD2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+3xx軸交于O、A兩點(diǎn),與直線yx交于O、B兩點(diǎn),點(diǎn)A、B的坐標(biāo)分別為(30)、(2,2).點(diǎn)P在拋物線上,且不與點(diǎn)O、B重合,過(guò)點(diǎn)Py軸的平行線交射線OB于點(diǎn)Q,以PQ為邊作RPQN,點(diǎn)N與點(diǎn)B始終在PQ同側(cè),且PN1.設(shè)點(diǎn)P的橫坐標(biāo)為mm0),PQ長(zhǎng)度為d

1)用含m的代數(shù)式表示點(diǎn)P的坐標(biāo).

2)求dm之間的函數(shù)關(guān)系式.

3)當(dāng)△PQN是等腰直角三角形時(shí),求m的值.

4)直接寫(xiě)出△PQN的邊與拋物線有兩個(gè)交點(diǎn)時(shí)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)EF分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AGAH什么關(guān)系?請(qǐng)說(shuō)明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出Sm的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.

②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于C2,n)、D兩點(diǎn),與x軸,y軸分別交于A、B02)兩點(diǎn),如果△AOC的面積為6.

1)求點(diǎn)A的坐標(biāo)

2)求一次函數(shù)和反比例函數(shù)的解析式;

3)如圖2,連接DO并延長(zhǎng)交反比例函數(shù)的圖象于點(diǎn)E,連接CE,求點(diǎn)E的坐標(biāo)和△COE的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在的青少年由于沉迷電視、手機(jī)、網(wǎng)絡(luò)游戲等,視力日漸減退,我市為了解學(xué)生的視力變化情況,從全市八年級(jí)隨機(jī)抽取了1200名學(xué)生,統(tǒng)計(jì)了每個(gè)人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計(jì)圖,并對(duì)視力下降的主要因素進(jìn)行調(diào)查,制成扇形統(tǒng)計(jì)圖.

解答下列問(wèn)題:

(1)圖中“其他”所在扇形的圓心角度數(shù)為

(2)若2016年全市八年級(jí)學(xué)生共有24000名,請(qǐng)你估計(jì)視力在4.9以下的學(xué)生約有多少名?

(3)根據(jù)扇形統(tǒng)計(jì)圖信息,你認(rèn)為造成中學(xué)生視力下降最主要的因素是什么,你覺(jué)得中學(xué)生應(yīng)該如何保護(hù)視力?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張矩形紙片中,,點(diǎn)分別在, 上,將紙片沿直線折疊,點(diǎn)落在上的一點(diǎn)處,點(diǎn)落在點(diǎn)處,有以下四個(gè)結(jié)論:

①四邊形是菱形;②平分;③線段的取值范圍為;④當(dāng)點(diǎn)與點(diǎn)重合時(shí),

以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+ca,b,c為常數(shù),且a≠0)中的xy的部分對(duì)應(yīng)值如表:

x

1

0

1

3

y

1

3

5

3

有下列結(jié)論:

ac0;

②當(dāng)x1時(shí),y的值隨x值的增大而減;

x3是方程ax2+b1x+c0的一個(gè)根;

④當(dāng)﹣1x3時(shí),ax2+b1x+c0

小明從中任意選取一個(gè)結(jié)論,則選中正確結(jié)論的概率為(

A. 1B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,函數(shù)y1=ax+ba、b為常數(shù),且ab≠0)的圖象如圖所示,y2=bx+a,設(shè)y=y1·y2.

1)當(dāng)b=-2a時(shí),

①若點(diǎn)(1,4)在函數(shù)y的圖象上,求函數(shù)y的表達(dá)式;

②若點(diǎn)(x1,p)和(x2q)在函數(shù)y的圖象上,且,比較p,q的大小;

2)若函數(shù)y的圖象與x軸交于(m,0)和(n0)兩點(diǎn),求證:m=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P,且AE=CF.

(1)求證:AF=BE,并求∠FPB的度數(shù);

(2)AE=2,試求AP·AF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案