分析 (1)①根據(jù)勾股定理分別求出兩個(gè)三角形的邊長,根據(jù)相似三角形的判定定理證明即可;
②根據(jù)相似三角形的性質(zhì)得到∠B=∠E,等量代換即可;
(2)在CA上截取CM=CB=n,連接BM,作MN⊥AB于N,根據(jù)勾股定理求出$\frac{BM}{MN}$,證明△EFD∽△MNB,根據(jù)相似三角形的性質(zhì)定理解答即可.
解答 解:(1)①AC=1,BC=3$\sqrt{2}$,AB=5,
DF=$\sqrt{2}$,EF=6,DE=5$\sqrt{2}$,
則$\frac{AC}{DF}$=$\frac{\sqrt{2}}{2}$,$\frac{BC}{EF}$=$\frac{\sqrt{2}}{2}$,$\frac{AB}{DE}$=$\frac{\sqrt{2}}{2}$,
∴$\frac{AC}{DF}$=$\frac{BC}{EF}$=$\frac{AB}{DE}$,
∴△ABC∽△DEF;
②∵△ABC∽△DEF;
∴∠B=∠E,
又∠E+∠D=45°,
∴∠B+∠D=45°;
(2)如圖,在CA上截取CM=CB=n,連接BM,作MN⊥AB于N,
則∠CMB=∠CBM=45°,BM=$\sqrt{2}$n,
∴∠A+∠ABM=45°,
∵∠C=90°,AC=m,BC=n,
∴AB=$\sqrt{{m}^{2}+{n}^{2}}$,
∴$\frac{1}{2}$×AB×MN=$\frac{1}{2}$×AM×BC,即$\sqrt{{m}^{2}+{n}^{2}}$×MN=(m-n)×n,
解得,MN=$\frac{n(m-n)}{\sqrt{{m}^{2}+{n}^{2}}}$,
∴$\frac{BM}{MN}$=$\sqrt{2}$n×$\frac{\sqrt{{m}^{2}+{n}^{2}}}{n(m-n)}$=$\frac{\sqrt{2{m}^{2}+2{n}^{2}}}{m-n}$,
∵∠A+∠D=45°,∠A+∠ABM=45°,
∴∠D=∠ABM,又∠MNB=∠F=90°,
∴△EFD∽△MNB,
∴$\frac{DE}{EF}$=$\frac{BM}{MN}$=$\frac{\sqrt{2{m}^{2}+2{n}^{2}}}{m-n}$.
點(diǎn)評(píng) 本題考查的是相似三角形的判定和性質(zhì)、勾股定理的應(yīng)用,掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 120° | B. | 100° | C. | 170° | D. | 150° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 正數(shù) | B. | 負(fù)數(shù) | C. | 零 | D. | 符號(hào)不確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com