【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,結(jié)論:①ac<0;②a﹣b+c<0;③b2﹣4ac≥0;④y隨x的增大而增大,其中正確的個數(shù)(

A.4個
B.3個
C.2個
D.1個

【答案】C
【解析】解:①∵拋物線開口向下,
∴a<0;
∵拋物線與y軸交點在y軸正半軸,
∴b>0,
∴ab<0,①正確;
②∵拋物線對稱軸0<x=﹣ <1,且當x=1時,y<0,
∴當x=﹣1時,y<0,
∴a﹣b+c<0,②正確;
③∵拋物線與x軸有兩個不同的交點,
∴方程ax2+bx+c=0有兩個不相等的實數(shù)根,
∴b2﹣4ac>0,③錯誤;
④根據(jù)二次函數(shù)圖象可知:在對稱軸左邊y隨x的增大而增大,在對稱軸右邊y隨x的增大而減小,
∴④錯誤.
綜上可知:正確的結(jié)論有①②.
故選C.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點出發(fā)以每秒個單位的速度在線段上從點向點運動,點同時從出發(fā)以每秒個單位的速度在線段上向點運動,連接,設(shè)、兩點運動時間為.

(1)運動   秒時,;

(2)運動多少秒時,能成立;

(3),,求的大。ㄓ煤的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.
①b2>4ac;
②4a+2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是拋物線上的兩點,則y1<y2
上述4個判斷中,正確的是(

A.①②
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,點D的坐標是(0, ),以點C為頂點的拋物線y=ax2+bx+c恰好經(jīng)過x軸上A,B兩點.

(1)求A,B,C三點的坐標;
(2)求過A,B,C三點的拋物線的解析式;
(3)若將上述拋物線沿其對稱軸向上平移后恰好過D點,求平移后拋物線的解析式,并指出平移了多少個單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程x2﹣3x﹣k=0有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)請選擇一個k的負整數(shù)值,并求出方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是等邊三角形ABC內(nèi)的一點,∠AOB=130°,BOC=α.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得到△ADC,連接OD.

(1)判斷△COD的形狀,并加以說明理由.

(2)若AD=1,OC=,OA=時,求α的度數(shù).

(3)探究:當α為多少度時,△AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元函數(shù)y=﹣2x+m和反比例函數(shù)y= 的圖象都經(jīng)過點A(﹣2,1).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求一次函數(shù)與反比例函數(shù)的另一個交點B的坐標;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)(﹣2)2+( 0 ﹣( 1
(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為菱形;
(2)連接AE、BE,AE與BE相等嗎?請說明理由.

查看答案和解析>>

同步練習冊答案