【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE , 求P點(diǎn)坐標(biāo).
【答案】
(1)解:由點(diǎn)A(﹣1,0)和點(diǎn)B(3,0)得: ,解得: ,∴拋物線的解析式為
(2)解: 令x=0,則y=3,∴C(0,3),∵ =﹣(x﹣1)2+4,∴D(1,4)
(3)解:設(shè)P(x,y)(x>0,y>0),S△COE= ×1×3= ,S△ABP= ×4y=2y,∵S△ABP=4S△COE,∴2y=4× ,∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合題意,舍去),x2=2,∴P(2,3)
【解析】(1)用待定系數(shù)法把A、點(diǎn)B的坐標(biāo)代入求出拋物線的解析式;(2)根據(jù)與y軸交于點(diǎn)C,求出點(diǎn)C的坐標(biāo),根據(jù)頂點(diǎn)式求出點(diǎn)D的坐標(biāo);(3)根據(jù)三角形的面積公式求出P點(diǎn)坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張寬為6cm的平行四邊形紙帶ABCD如圖1所示,AB=10cm,小明用這張紙帶將底面周長(zhǎng)為10cm直三棱柱紙盒的側(cè)面進(jìn)行包貼(要求包貼時(shí)沒有重疊部分).小明通過操作后發(fā)現(xiàn)此類包貼問題可將直三棱柱的側(cè)面展開進(jìn)行分析.
(1)若紙帶在側(cè)面纏繞三圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則紙帶AD的長(zhǎng)度為 cm;
(2)若AD=100cm,紙帶在側(cè)面纏繞多圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則這個(gè)直三棱柱紙盒的高度是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知兩點(diǎn)A(3,m),B(2m,4),且A和B到x軸距離相等,求B點(diǎn)坐標(biāo).
(2)點(diǎn)A在第四象限,當(dāng)m為何值時(shí),點(diǎn)A(m+2,3m5)到x軸的距離是它到y軸距離的一半.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一空曠場(chǎng)地上設(shè)計(jì)一落地為矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m長(zhǎng)的繩子一端固定在B點(diǎn)處,小狗在不能進(jìn)入小屋內(nèi)的條件下活動(dòng),其可以活動(dòng)的區(qū)域面積為S(m2).
(1)如圖1,若BC=4m,則S=m2 .
(2)如圖2,現(xiàn)考慮在(1)中的矩形ABCD小屋的右側(cè)以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其他條件不變,則在BC的變化過程中,當(dāng)S取得最小值時(shí),邊BC的長(zhǎng)為m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃購進(jìn)兩種手機(jī)若干部,共需15.5萬元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.1萬元.
(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場(chǎng)怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.
(1)當(dāng)a=﹣ 時(shí),①求h的值;②通過計(jì)算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為 m的Q處時(shí),乙扣球成功,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)C是AB上一點(diǎn),△ACM、△CBN都是等邊三角形.
(1)說明AN=MB;
(2)將△ACM繞點(diǎn)C按逆時(shí)針旋轉(zhuǎn)180°,使A點(diǎn)落在CB上,請(qǐng)對(duì)照原題圖畫出符合要求的圖形;
(3)在(2)所得到的圖形中,結(jié)論“AN=BM”是否成立?若成立,請(qǐng)說明理由;若不成立,也請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,如圖A、B兩點(diǎn)之間的距離表示為AB,記作AB=|a﹣b|.回答下列問題:
(1)數(shù)軸上表示2和5兩點(diǎn)之間的距離是 ,數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是 ;
(2)已知|a﹣3|=7,則有理數(shù)a= ;
(3)若數(shù)軸上表示數(shù)b的點(diǎn)位于﹣4與3的兩點(diǎn)之間,則|b﹣3|+|b+4|= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com