【題目】如圖,以正方形ABCD的邊AD為一邊作等邊三角形ADE,F(xiàn)DE的中點(diǎn),BE、AF相交于點(diǎn)G,連接DG,若正方形ABCD的面積為36,則BG=_____

【答案】

【解析】

連接BD,由題意得正方形ABCD和等邊三角形ADE的邊長(zhǎng)都為6,∠BAE=150°,因?yàn)?/span>AB=AD=AE,所以∠AEB=15°,則∠DEG=45°,再根據(jù)等邊三角形的性質(zhì)得DG=EG,即△DFG為等腰直角三角形,求得DG的長(zhǎng),然后根據(jù)勾股定理即可得到BG的長(zhǎng).

解:如圖所示,連接BD,

∵S正方形ABCD=36,

∴AD=6,BD=6,

在正方形ABCD和等邊△ADE中,

∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AD=AE,

∴∠AEB=(180°﹣∠BAE)=(180°﹣150°)=15°,

∴∠DEG=∠AED﹣∠AEB=60°﹣15°=45°,

∵FDE的中點(diǎn),

∴AF垂直平分DE,DF=DE=×6=3,

∴DG=EG,

∴∠GDE=45°,

∴△DFG是等腰直角三角形,

∴DG=DF=3,∠DGE=90°,

∴Rt△BDG中,BG===3

故答案為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD右側(cè)△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設(shè)

①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程rx2+(r+2)x+r﹣1=0有根只有整數(shù)根的一切有理數(shù)r的值有( 。﹤(gè).

A. 1 B. 2 C. 3 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱(chēng)此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說(shuō)函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)ABC為直角三角形時(shí),寫(xiě)出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,、分別垂直平分,交、兩點(diǎn),相交于點(diǎn).

(1)的周長(zhǎng)為15 cm,求的長(zhǎng).

(2),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織一項(xiàng)公益知識(shí)競(jìng)賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用畫(huà)樹(shù)狀圖列表列舉等方法給出分析過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5月份,某品牌襯衣正式上市銷(xiāo)售.51日的銷(xiāo)售量為10件,52日的銷(xiāo)售量為35件,以后每天的銷(xiāo)售量比前一天多25件,直到日銷(xiāo)售量達(dá)到最大后,銷(xiāo)售量開(kāi)始逐日下降,至此,每天的銷(xiāo)售量比前一天少15件,直到531日銷(xiāo)售量為0.設(shè)該品牌襯衣的日銷(xiāo)量為p(件),銷(xiāo)售日期為n(日),pn之間的關(guān)系如圖所示.

(1)寫(xiě)出p關(guān)于n的函數(shù)關(guān)系式p=   (注明n的取值范圍);

(2)經(jīng)研究表明,該品牌襯衣的日銷(xiāo)量超過(guò)150件的時(shí)間為該品牌襯衣的流行期.請(qǐng)問(wèn):該品牌襯衣本月在市面的流行期是多少天?

(3)該品牌襯衣本月共銷(xiāo)售了   件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,進(jìn)價(jià)是20元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是30元時(shí),銷(xiāo)售量是500件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.

(1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y件和銷(xiāo)售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫(xiě)在表格中:

銷(xiāo)售單價(jià)(元)

x

銷(xiāo)售量y(件)

__________

銷(xiāo)售玩具獲得利潤(rùn)w(元)

__________

(2)在(1)問(wèn)條件下,若商場(chǎng)獲得了8000元銷(xiāo)售利潤(rùn),求該玩具銷(xiāo)售單價(jià)x應(yīng)定為多少元.

(3)在(1)問(wèn)條件下,若玩具廠規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于35元,且商場(chǎng)要完成不少于350件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系中

1作出ABC關(guān)于軸對(duì)稱(chēng)的并寫(xiě)出三個(gè)頂點(diǎn)的坐標(biāo) ( 。,( 。,( 。

2直接寫(xiě)出ABC的面積為 ;

3軸上畫(huà)點(diǎn)P使PA+PC最小

查看答案和解析>>

同步練習(xí)冊(cè)答案