【題目】如圖,己知△ABC,任取一點O,連AO,BO,CO,并取它們的中點D,E,F,得△DEF,則下列說法正確的個數是( ) ①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4
科目:初中數學 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處;
(1)求證:B′E=BF;
(2)設AE=a,AB=b,BF=C,試猜想a,b,c之間的一種關系,并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某計算裝置有一數據輸入口A和一運算結果的輸出口B,表格中是小明輸入的一些數據和這些數據經該裝置計算后輸出的相應結果,按照這個計算裝置的計算規(guī)律,若輸入的數是10,則輸出的數是( )
A | 1 | 2 | 3 | 4 | 5 |
B | 0 | 3 | 8 | 15 | 24 |
A. 99 B. 100 C. 101 D. 102
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線PA經過點A(-1,0)、點P(1,2),直線PB是一次函數y=-x+3的圖象.
(1)求直線PA的表達式及Q點的坐標;
(2)求四邊形PQOB的面積;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某單元樓居民六月份的用電(單位:度)情況,則關于用電量描述不正確的是( )
A. 眾數為30 B. 中位數為30 C. 平均數為24 D. 方差為84
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,點E、F分別在直線AB,CD上,點P在AB、CD之間,連結EP、FP,如圖1,過FP上的點G作GH∥EP,交CD于點H,且∠1=∠2.
(1)求證:AB∥CD;
(2)如圖2,將射線FC沿FP折疊,交PE于點J,若JK平分∠EJF,且JK∥AB,則∠BEP與∠EPF之間有何數量關系,并證明你的結論;
(3)如圖3,將射線FC沿FP折疊,將射線EA沿EP折疊,折疊后的兩射線交于點M,當EM⊥FM時,求∠EPF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法:①若=﹣1,則a、b互為相反數;②若a+b<0,且>0,則|a+2b|=﹣a﹣2b;③一個數的立方是它本身,則這個數為0或1;④若﹣1<a<0,則a2>﹣;⑤若a+b+c<0,ab>0,c>0,則|﹣a|=﹣a,其中正確的個數是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點D,BD=8cm.點M從點A出發(fā),沿AC的方向勻速運動,同時直線PQ由點B出發(fā),沿BA的方向勻速運動,運動過程中始終保持PQ∥AC,直線PQ交AB于點P、交BC于點Q、交BD于點F.連接PM,設運動時間為t秒(0<t≤5).線段CM的長度記作y甲 , 線段BP的長度記作y乙 , y甲和y乙關于時間t的函數變化情況如圖所示.
(1)由圖2可知,點M的運動速度是每秒 cm,當t為何值時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是;
(2)設四邊形PQCM的面積為ycm2 , 求y與t之間的函數關系式;
(3)是否存在某一時刻t,使S四邊形PQCM= S△ABC?若存在,求出t的值;若不存在,說明理由;
(4)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市從今年1月1日起調整居民用水價格,每立方米水費上漲,小麗家去年12月的水費是15元,而今年7月的水費則是30元.已知小麗家今年7月的用水量比去年12月的用水量多5m3,求該市今年居民用水的價格.請表述出此題的主要等量關系,(寫出一個即可)_____________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com