已知:如圖,扇形OAB和扇形OA′B′的圓心角相同,設(shè)AA′=BB′=d.
AB
=l1,
A′B′
=l2
求證:圖中陰影部分的面積S=
1
2
(l1+l2)d
分析:設(shè)∠AOB=n°,OA′=OB′=r,根據(jù)弧長公式用l1,l2表示出r,再根據(jù)S陰影=S扇形OAB-S扇形OA′B′進(jìn)行計(jì)算即可得出結(jié)論.
解答:證明:設(shè)∠AOB=n°,OA′=OB′=r,
AB
=l1,
A′B′
=l2
∴l(xiāng)1=
nπ(r+d)
180
,l2=
nπr
180
,
l1
l2
=
r+d
r

∴r=
l2d
l1-l2
①,
∵S陰影=S扇形OAB-S扇形OA′B′=
1
2
l1(r+d)-
1
2
l2r=
1
2
(l1r+l1d-l2r)
=
1
2
[(l1-l2)r+l1d]
=
1
2
[(l1-l2)×
l2d
l1-l2
+l1d]
=
1
2
(l2d+l1d)
=
1
2
(l1+l2)d.
點(diǎn)評:本題考查的是扇形面積的計(jì)算及弧長公式,根據(jù)弧長公式用l1,l2表示出r的值是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1997•臺灣)已知:如圖,扇形AOB.求作:一個(gè)與OA、OB、
AB
皆相切的圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,扇形OAB和扇形OA′B′的圓心角相同,設(shè)AA′=BB′=d.數(shù)學(xué)公式=l1,數(shù)學(xué)公式=l2
求證:圖中陰影部分的面積數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初三數(shù)學(xué)圓及旋轉(zhuǎn)題庫 第8講:弧長和扇形面積(解析版) 題型:解答題

已知:如圖,扇形OAB和扇形OA′B′的圓心角相同,設(shè)AA′=BB′=d.=l1,=l2
求證:圖中陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1997年臺灣省臺北市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,扇形AOB.求作:一個(gè)與OA、OB、皆相切的圓.

查看答案和解析>>

同步練習(xí)冊答案