在邊長為6的正方形中間挖去一個邊長為x)的小正方形,如果設(shè)剩余部分的面積為y,那么y關(guān)于x的函數(shù)解析式為      

試題分析:由題意得,原正方形的面積是6×6=36,其中的小正方形面積是x2,所以剩余部分的面積是36- x2,即.
點評:該題較為簡單,主要考查學(xué)生對實際問題的理解,對于這類題型,要先認真審題,再列出關(guān)系式。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點, A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.

(1)填空:點C的坐標(biāo)是     ,b=   ,c=    ;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+mx+n與x軸分別交于點A(4,0),B(-2,0),與y軸交于點C.

(1)求該拋物線的解析式;                                 
(2)M為第一象限內(nèi)拋物線上一動點,點M在何處時,△ACM的面積最大;
(3)在拋物線的對稱軸上是否存在這樣的點P,使得△PAC為直角三角形?若存在,請求出所有可能點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,當(dāng)x=2時,拋物線取得最小值-1,并且與y軸交于點C(0,3),與x軸交于點A、B(A在B的右邊)。

(1)求拋物線的解析式;
(2)D是線段AC的中點,E為線段AC上的一動點(不與A,C重合),過點E作y軸的平行線EF與拋物線交于點F。問:是否存在△DEF與△AOC相似?若存在,求出點E的坐標(biāo);若不存在,請說明理由;
(3)在拋物線的對稱軸上是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出點p的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)圖象y=ax2+(a-3)x+1與x軸只有一個交點則a的值為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,等邊△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿A→B→C的方向運動,到達點C時停止,設(shè)運動時間為x(s),y=PC2,則y關(guān)于x的函數(shù)的圖像大致為  【 】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的部分圖象如圖所示,若,則x的取值范圍是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系xOy中, Rt△AOB的直角邊OA在x軸的正半軸上,點B在第一象限,并且AB=3,OA=6,將△AOB繞點O逆時針旋轉(zhuǎn)90度得到△COD.點P從點C出發(fā)(不含點C),沿射線DC方向運動,記過點D,P,B的拋物線的解析式為y=ax2+bx+c(a<0).

(1)直接寫出點D的坐標(biāo);
(2)在直線CD的上方是否存在一點Q,使得點D,O,P,Q四點構(gòu)成的四邊形是菱形,若存在,求出P與Q的坐標(biāo);
(3)當(dāng)點P運動到∠DOP=45度時,求拋物線的對稱軸;
(4)求代數(shù)式a+b+c的值的取值范圍(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的部分圖象如圖所示,由圖象可知該二次函數(shù)的圖象的對稱軸是直線x       

查看答案和解析>>

同步練習(xí)冊答案