【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設(shè)移動時間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
【答案】(1)當(dāng)t=時,以A、P、M為頂點的三角形與△ABC相似;(2)當(dāng)t=時,四邊形APNC的面積S有最小值,其最小值是.
【解析】
試題分析:根據(jù)勾股定理求得AB=5cm.
(1)分類討論:△AMP∽△ABC和△APM∽△ABC兩種情況.利用相似三角形的對應(yīng)邊成比例來求t的值;
(2)如圖,過點P作PH⊥BC于點H,構(gòu)造平行線PH∥AC,由平行線分線段成比例求得以t表示的PH的值;然后根據(jù)“S=S△ABC﹣S△BPH”列出S與t的關(guān)系式S=(t﹣)2+(0<t<2.5),則由二次函數(shù)最值的求法即可得到S的最小值.
解:∵如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.
∴根據(jù)勾股定理,得=5cm.
(1)以A,P,M為頂點的三角形與△ABC相似,分兩種情況:
①當(dāng)△AMP∽△ABC時,=,即=,
解得t=;
②當(dāng)△APM∽△ABC時,=,即=,
解得t=0(不合題意,舍去);
綜上所述,當(dāng)t=時,以A、P、M為頂點的三角形與△ABC相似;
(2)存在某一時刻t,使四邊形APNC的面積S有最小值.理由如下:
假設(shè)存在某一時刻t,使四邊形APNC的面積S有最小值.
如圖,過點P作PH⊥BC于點H.則PH∥AC,
∴=,即=,
∴PH=t,
∴S=S△ABC﹣S△BPN,
=×3×4﹣×(3﹣t)t,
=(t﹣)2+(0<t<2.5).
∵>0,
∴S有最小值.
當(dāng)t=時,S最小值=.
答:當(dāng)t=時,四邊形APNC的面積S有最小值,其最小值是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一元二次方程ax2+bx+c=0有一根為0,則下列結(jié)論正確的是( )
A.a=0
B.b=0
C.c=0
D.c≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù):7,a,8,b,10,c,6的平均數(shù)是4.
(1)求a,b,c的平均數(shù);
(2)求2a+1,2b+1,2c+1的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩根木棒長分別為10cm和18cm,要釘成一個三角形木架,則下列四根木棒應(yīng)選取( )
A. 8cm B. 12cm C. 30cm D. 40cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D在邊BC所在的直線上,過點D作DF∥AC交直線AB于點F,DE∥AB交直線AC于點E.
(1)當(dāng)點D在邊BC上時,如圖①,求證:DE+DF=AC.
(2)當(dāng)點D在邊BC的延長線上時,如圖②;當(dāng)點D在邊BC的反向延長線上時,如圖③,請分別寫出圖②、圖③中DE,DF,AC之間的數(shù)量關(guān)系,不需要證明.
(3)若AC=6,DE=4,則DF= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com