【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BCM,O,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作∠A∠B的平分線AE,BF,分別交BC,ADE,F,連接EF,則四邊形ABEF是菱形.根據(jù)兩人的作法可判斷( )

A. 甲正確,乙錯誤 B. 乙正確,甲錯誤

C. 甲、乙均正確 D. 甲、乙均錯誤

【答案】C

【解析】試題分析:甲的作法正確;四邊形ABCD是平行四邊形,∴AD∥BC∴∠DAC=∠ACN,∵MNAC的垂直平分線,∴AO=CO,在△AOM△CON∴△AOM≌△CONASA),∴MO=NO四邊形ANCM是平行四邊形,∵AC⊥MN,四邊形ANCM是菱形;

乙的作法正確;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABCAE平分∠BAD,∴∠2=∠3,∠5=∠6∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE∴AF=BE∵AF∥BE,且AF=BE,四邊形ABEF是平行四邊形,∵AB=AF,平行四邊形ABEF是菱形;故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ABCD.

(1)如圖1,直接寫出∠BME、E、END的數(shù)量關系為   ;

(2)如圖2,BME與∠CNE的角平分線所在的直線相交于點P,試探究∠P與∠E之間的數(shù)量關系,并證明你的結(jié)論;

(3)如圖3,ABM=MBE,CDN=NDE,直線MB、ND交于點F,則 =   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,根據(jù)圖中信息解答下列問題:

(1)關于x的不等式axb>0的解集是________;

(2)關于x的不等式mxn<1的解集是________;

(3)當x為何值時,y1y2?

(4)當x<0時,比較y2y1的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,CD⊥AB于D,求:

(1)斜邊AB的長;

(2)△ABC的面積;

(3)高CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理是一條古老的數(shù)學定理,它有很多種證明方法,我國漢代數(shù)學家趙爽根據(jù)弦圖,利用面積法進行證明,著名數(shù)學家華羅庚曾提出把數(shù)形關系(勾股定理)帶到其他星球,作為地球人與其他星球進行第一次談話的語言.

[定理表述]

請你寫出勾股定理內(nèi)容(用文字語言表述):

[嘗試證明]

以圖1中的直角三角形為基礎,可以構造出以a、b為底,以(a+b)為高的直角梯形(如圖2),請你利用圖2,證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知點O(0,0),A(1,0),B(1,1),C(2,0),△OBC的面積記為S1 , 過O、B、C三點的半圓面積記為S2;過O、B、C三點的拋物線與x軸所圍成的圖形面積記為S3 , 則S1、S2、S3的大小關系是 . (用“>”連接)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣2,3),B(﹣3,2),C(﹣1,1).
(1)畫出△ABC關于原點O對稱的△A1B1C1;
(2)若將△ABC繞點C順時針方向旋轉(zhuǎn)90°后,求AC邊掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是對角線AC上一點,且CECD,過點EEFACAD于點F,連接BE.

(1)求證:DFAE;

(2)當AB=2時,求BE2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC,BD相交于點O,AC平分∠DCBCDAD,∠ACD45°,∠BAC60°.

(1)證明:ADBC;

(2)求∠EAD的度數(shù);

(3)求證:∠AOB=∠DAC +∠CBD

查看答案和解析>>

同步練習冊答案