【題目】如圖,點(diǎn)P是⊙O外一點(diǎn),過點(diǎn)P作⊙O的切線PA,切點(diǎn)為A,連接PO,延長(zhǎng)PO交⊙O于點(diǎn)B,若∠P=30°,PA=3 ,則弧AB的長(zhǎng)為

【答案】2π
【解析】解:如圖,連接OA,

∵PA與⊙O相切,

∴∠OAP=90°,

在Rt△PAO中,∵∠P=30°,PA=3 ,

∴∠AOP=60°,OA=PAtan∠P=3 × =3,

∴∠AOB=120°,

則弧AB的長(zhǎng)為 =2π,

所以答案是:2π.

【考點(diǎn)精析】關(guān)于本題考查的切線的性質(zhì)定理和弧長(zhǎng)計(jì)算公式,需要了解切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑;若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長(zhǎng)為l,則l=nπr/180;注意:在應(yīng)用弧長(zhǎng)公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形紙片ABCD中,AB8,將紙片折疊,使頂點(diǎn)B落在邊AD上的E點(diǎn)處,折痕的一端G點(diǎn)在邊BC上.

(1)如圖1,當(dāng)折痕的另一端FAB邊上且AE4時(shí),求AF的長(zhǎng)

(2)如圖2,當(dāng)折痕的另一端FAD邊上且BG10時(shí),

求證:EFEGAF的長(zhǎng).

(3)如圖3,當(dāng)折痕的另一端FAD邊上,B點(diǎn)的對(duì)應(yīng)點(diǎn)E在長(zhǎng)方形內(nèi)部,EAD的距離為2cm,且BG10時(shí),求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過點(diǎn)C作CE⊥DB交DB的延長(zhǎng)線于點(diǎn)E,直線AB與CE相交于點(diǎn)F.

(1)求證:CF為⊙O的切線;
(2)填空:當(dāng)∠CAB的度數(shù)為時(shí),四邊形ACFD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)數(shù)a,b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,化簡(jiǎn)|a|+ 的結(jié)果是( )

A.﹣2a+b
B.2a﹣b
C.﹣b
D.b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作ABC關(guān)于點(diǎn)C成中心對(duì)稱的A1B1C1

2)將A1B1C1向右平移4個(gè)單位,作出平移后的A2B2C2

3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫出點(diǎn)P的坐標(biāo)(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°,得到ABCD′,若點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),若點(diǎn)B′恰好落在BC邊上,則∠C=( )

A. 105°B. 120°C. 135°D. 150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線MN與直線PQ相交于O,∠POM60°,點(diǎn)A在射線OP上運(yùn)動(dòng),點(diǎn)B在射線OM上運(yùn)動(dòng).

(1)如圖1,∠BAO=70°,已知AE、BE分別是∠BAO和∠ABO角的平分線,試求出∠AEB的度數(shù).

(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DECE分別是∠ADC和∠BCD的角平分線,點(diǎn)AB在運(yùn)動(dòng)的過程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其值.

(3)在(2)的條件下,在△CDE中,如果有一個(gè)角是另一個(gè)角的2倍,請(qǐng)直接寫出∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,∠BAC=25°,則∠ADC=( )

A.25
B.30°
C.45°
D.65°

查看答案和解析>>

同步練習(xí)冊(cè)答案