若點(diǎn)P(a+b,-5)與點(diǎn)Q(1,3a-b)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則關(guān)于x的方程的解為   
【答案】分析:根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)得到a+b=-1,3a-b=5,可求出a=1,b=-2,然后代入方程得到x2-2x+1=0,再利用配方法解方程即可.
解答:解:∵點(diǎn)P(a+b,-5)與點(diǎn)Q(1,3a-b)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,
∴a+b=-1,3a-b=5,
∴a=1,b=-2,
∴關(guān)于x的方程變形為x2-2x+1=0,即(x-1)2=0,
∴x1=x2=1.
故答案為x1=x2=1.
點(diǎn)評(píng):本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn):點(diǎn)P(a,b)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)P′的坐標(biāo)為(-a,-b).也考查了一元二次方程的解法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)三點(diǎn)A(-1,0),B(3,0),C(0,-3),它的頂點(diǎn)為M,且正比例函數(shù)y=kx的圖象與二次函數(shù)的圖象相交于D、E兩點(diǎn).
(1)求該二次函數(shù)的解析式和頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)E的坐標(biāo)是(2,-3),且二次函數(shù)的值小于正比例函數(shù)的值時(shí),試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)試探究:拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PAC為等腰三角形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、兩個(gè)邊長(zhǎng)不定的正方形ABCD與AEFG如圖1擺放,將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度.
(1)若點(diǎn)E落在BC邊上(如圖2),試探究線段CF與AC的位置關(guān)系并證明;
(2)若點(diǎn)E落在BC的延長(zhǎng)線上時(shí)(如圖3),(1)中結(jié)論是否仍然成立?若不成立,請(qǐng)說(shuō)明理由;若成立,加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,A是弧BD的中點(diǎn),過(guò)A點(diǎn)的切線與CB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:AB•DA=CD•BE;
(2)若點(diǎn)E在CB延長(zhǎng)線上運(yùn)動(dòng),點(diǎn)A在弧BD上運(yùn)動(dòng),使切線EA變?yōu)楦罹EFA,其它條件不精英家教網(wǎng)變,問(wèn)具備什么條件使原結(jié)論成立?(要求畫出示意圖,注明條件,不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、已知圓心都在y軸上的兩圓相交于A、B兩點(diǎn),若點(diǎn)A坐標(biāo)是(1,2),則點(diǎn)B的坐標(biāo)為
(-1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A(x,0)與B(2,0)的距離為5,則x=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案