【題目】根據(jù)全等形的定義,我們把四個角分別相等,四條邊分別相等的兩個凸四邊形叫做全等四邊形.

1)某同學(xué)在探究全等四邊形的判定時,得到如下三個命題,請判斷它們是否正確(直接在橫線上填寫).

①四條邊成比例的兩個凸四邊形全等;(   命題)

②四個角分別相等的兩個凸四邊形全等;(   命題)

③兩個面積相等的正方形全等;(   命題)

④三角分別相等,且其中兩角夾邊相等兩個凸四邊形全等.(   命題)

2)如圖,在四邊形ABCD和四邊形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,ABA1B1BC=∠B1C1,CDC1D1.求證:在四邊形ABCD和四邊形A1B1C1D1全等.

【答案】(1)假,假,假,真;(2)證明見解析.

【解析】

1)根據(jù)全等形的定義即可得出答案;

2)利用全等三角形證明四條邊對應(yīng)相等、四個角對應(yīng)相等,進而證明兩個圖形全等即可得出答案.

解:(1)①四條邊成比例的兩個凸四邊形全等,不一定全等.是假命題.

②四個角分別相等的兩個凸四邊形全等,不一定全等,是假命題.

③兩個面積相等的正方形全等,不一定全等,是假命題.

④三角分別相等,且其中兩角夾邊相等兩個凸四邊形全等,正確,是真命題.

故答案為假,假,假,真.

2)如圖,連接AC,A1C1

∵∠ABC=∠A1B1C1,ABA1B1BC=∠B1C1,

∴△ABC≌△A1B1C1SAS),

ACA1C1,∠ACB=∠A1C1B1,∠CAB=∠C1A1B1

∵∠BCD=∠B1C1D1,

∴∠ACD=∠A1C1D1,

CDC1D1,

∴△ACD≌△A1C1D1SAS),

ADA1D1,∠D=∠D1DAC=∠D1A1C1,

∴∠DAB=∠D1A1B1

ABA1B1,BCB1C1,CDC1D1,ADA1D1,∠DAB=∠D1A1B1,∠B=∠B1,∠DCB=∠D1C1B1,∠D=∠D1,

∴四邊形ABCD和四邊形A1B1C1D1全等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖1,平面直角坐標系中,直線分別與軸、軸交于點.雙曲線與直線交于點.

1)求的值;

2)在圖1中以線段為邊作矩形,使頂點在第一象限、頂點軸負半軸上.線段軸于點.直接寫出點,的坐標;

3)如圖2,在(2)題的條件下,已知點是雙曲線上的一個動點,過點軸的平行線分別交線段于點,.

請從下列,兩組題中任選一組題作答.我選擇組題.

A.①當(dāng)四邊形的面積為時,求點的坐標;

②在①的條件下,連接,.坐標平面內(nèi)是否存在點(不與點重合),使以,為頂點的三角形與全等?若存在,直接寫出點的坐標;若不存在,說明理由.

B.①當(dāng)四邊形成為菱形時,求點的坐標;

②在①的條件下,連接,.坐標平面內(nèi)是否存在點(不與點重合),使以為頂點的三角形與全等?若存在,直接寫出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠AOB=90°,AB∥x軸,OB=2,雙曲線y=經(jīng)過點B,將△AOB繞點B逆時針旋轉(zhuǎn),使點O的對應(yīng)點D落在x軸的正半軸上.若AB的對應(yīng)線段CB恰好經(jīng)過點O.

(1)求點B的坐標和雙曲線的解析式;

(2)判斷點C是否在雙曲線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖像如圖所示,它的對稱軸為直線,與軸交點的橫坐標分別為,且.下列結(jié)論中:①;②;③;④方程有兩個相等的實數(shù)根;⑤.其中正確的有(

A.②③⑤B.②③C.②④D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( 。

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1的解析式為y= -x2+bx+cC1經(jīng)過A-2,5)、B1,2)兩點.

1)求bc的值;

2)若一條拋物線與拋物線C1都經(jīng)過A、B兩點,且開口方向相同,稱兩拋物線是兄弟拋物線,請直接寫出C1的一條兄弟拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6cmAD8cm,連接BD,將△ABDB點作順時針方向旋轉(zhuǎn)得到△A′B′D′B′B重合),且點D′剛好落在BC的延長上,A′D′CD相交于點E

1)求矩形ABCD與△A′B′D′重疊部分(如圖中陰影部分A′B′CE)的面積;

2)將△A′B′D′2cm/s的速度沿直線BC向右平移,當(dāng)B′移動到C點時停止移動.設(shè)矩形ABCD與△A′B′D′重疊部分的面積為ycm2,移動的時間為x秒,請你求出y關(guān)于x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ABCD,∠A90°,EAD上,且CE平分∠BCD,BE平分∠ABC,則下列關(guān)系式中成立的有( 。

,②,③,④CE2CDBC

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點分別在反比例函數(shù),的圖象上.若,,則的值為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案