【題目】如圖,分別以長方形OABC的邊OC,OA所在直線為x軸、y軸,建立平面直角坐 標(biāo)系.已知AO=13,AB=5,點(diǎn)E在線段OC上,以直線AE為軸,把△OAE翻折,點(diǎn)O的對應(yīng)點(diǎn)D恰好落在線段BC.則點(diǎn)E的坐標(biāo)為_______.

【答案】,0

【解析】

由翻折的性質(zhì)可得AO=AD=13,然后利用勾股定理可求出BD,進(jìn)而得到CD,設(shè)OE=ED=x,則CE=5-x,在RtCED中,利用勾股定理列出方程求出OE即可.

解:∵四邊形OABC是長方形,

BC=AO=13,OC=AB=5,

由翻折的性質(zhì)可得AO=AD=13,OE=ED,

BD=,

CD=1

設(shè)OE=ED=x,則CE=5-x,

RtCED中,由勾股定理得,(5-x2+12=x2

解得:,即,

∴點(diǎn)E的坐標(biāo)為(0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天,一蔬菜經(jīng)營戶用180元錢從蔬菜批發(fā)市場批了西紅柿和豆角共40千克到菜市場去賣,西紅柿和豆角這天的批發(fā)價(jià)與零售價(jià)如下表所示:

品名

西紅柿

豆角

批發(fā)價(jià)(單位:元/千克)

3.6

4.6

零售價(jià)(單位:元/千克)

5.4

7.5

問:他當(dāng)天賣完這些西紅柿和豆角能賺多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在解決數(shù)學(xué)問題時(shí),我們常常從特殊入手,猜想結(jié)論,并嘗試發(fā)現(xiàn)解決問題的策略與方法.

(問題提出)

求證:如果一個(gè)定圓的內(nèi)接四邊形對角線互相垂直,那么這個(gè)四邊形的對邊的平方和是一個(gè)定值.

(從特殊入手)

我們不妨設(shè)定圓O的半徑是R,O的內(nèi)接四邊形ABCD中,ACBD.

請你在圖①中補(bǔ)全特殊殊位置時(shí)的圖形,并借助于所畫圖形探究問題的結(jié)論.

(問題解決)

已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, ACBD.

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為打入國際市場,決定從、兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)

項(xiàng)

年固定

成本

每件產(chǎn)品

成本

每件產(chǎn)品

銷售價(jià)

每年最多可

生產(chǎn)的件數(shù)

產(chǎn)品

產(chǎn)品

其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),為待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì).另外,年銷售產(chǎn)品時(shí)需上交萬美元的特別關(guān)稅.假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.

寫出該廠分別投資生產(chǎn)、兩種產(chǎn)品的年利潤,與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系并指明其自變量取值范圍;

如何投資才可獲得最大年利潤?請你做出規(guī)劃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,,動(dòng)點(diǎn)從點(diǎn)出發(fā)以的速度沿勻速運(yùn)動(dòng)(、不重合).動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā)以同樣的速度沿的延長線方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)、同時(shí)停止運(yùn)動(dòng)(不與重合).設(shè)運(yùn)動(dòng)時(shí)間為以 ().過,連接 .

1 ;(用含 的代數(shù)式表示)

2)當(dāng)為何值時(shí),為直角三角形;

3)點(diǎn)沿的延長線的方向平移到 ,且.是否存在某一時(shí)刻,使點(diǎn)的平分線上?若存在,求出的值,若不存在,請說明理由;

4)在運(yùn)動(dòng)過程中線段的長是否發(fā)生變化?如果不變,求出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行節(jié)能減排,低碳經(jīng)濟(jì)政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費(fèi)為b元,如圖所示l1l2分別表示每輛車的燃料費(fèi)(含改裝費(fèi))y(元)與正常運(yùn)營時(shí)間x(天)之間的關(guān)系.

1)哪條線表示每輛車改裝后的燃料費(fèi)(含改裝費(fèi))y(元)與正常運(yùn)營時(shí)間x(天)之間的關(guān)系?

2)每輛車的改裝費(fèi)b= 元,正常營運(yùn) 天后,就可以從節(jié)省的燃料費(fèi)中收回改裝成本;

3)每輛車改裝前每天的燃料費(fèi)為 元;改裝后每天的燃料費(fèi)為 元;

4)直接寫出每輛車改裝前、后的燃料費(fèi)(含改裝費(fèi))y(元)與正常運(yùn)營時(shí)間x(天)之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)B,A,D在同一條直線上,M,N分別為BE,CD的中點(diǎn).

(1)求證:△ABE≌ACD;

(2)判斷△AMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ADBC,AE平分∠BAD,點(diǎn)E是CD的中點(diǎn).

1)求證:AB=ADBC

2)求證:AEBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形如圖放置,點(diǎn)的坐標(biāo)分別是、,將此平行四邊形繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到平行四邊形

如拋物線經(jīng)過點(diǎn)、、,求此拋物線的解析式;

情況下,點(diǎn)是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問:當(dāng)點(diǎn)在何處時(shí),的面積最大?最大面積是多少?并求出此時(shí)的坐標(biāo);

的情況下,若為拋物線上一動(dòng)點(diǎn),軸上的一動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,當(dāng)、、構(gòu)成以作為一邊的平行四邊形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案