【題目】如圖,矩形ABCD中,BCABEAD上一點,△ABE沿BE折疊,點A恰好落在線段CE上的點F處.

1)求證:CFDE

2)設m

m,試求∠ABE的度數(shù);

k,試求mk滿足的關系式.

【答案】1)見解析;(2ABE=15°,m22kk2

【解析】

1)通過折疊前后兩個圖像全等,然后證明CEDBCF即可;(2)由題知AB=BF,BC=AD通過,得出=,判斷角度求解即可,由m,k 的得出邊之間的關系,在通過RtCED建立勾股定理方程化簡即可求出

1)證明:由折疊的性質可知,∠BEA=∠BEF

ADBC,

∴∠BEA=∠EBC,

∴∠BEF=∠EBC,

BCCE;

AB=BF=CD, CED和△BCF都為直角三角形

∴△CEDBCF

CFDE;

2)解:由(1)得BCCE

BC=AD

AD=CE

AB=BF

=

BCF都為直角三角形

∴∠FBC=60°

∴∠ABE=

km,

AEkAD,ABmAD,

DEADAEAD1k),

RtCED中,CE2CD2+DE2,即AD2=(mAD2+[AD1k]2,

整理得,m22kk2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,小聰同學利用直尺和圓規(guī)完成了如下操作:

①作的平分線于點

②作邊的垂直平分線,相交于點;

③連接,.

請你觀察圖形解答下列問題:

(1)線段,,之間的數(shù)量關系是________;

(2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△ABC中,點DBC邊上(不與點B、點C重合),點EAC的延長線上,DE=DA(如圖1).

(1)求證:∠BAD=∠EDC;

(2)點E關于直線BC的對稱點為M,連接DM,AM.

依題意將圖2補全;

若點DBC邊上運動,DAAM始終相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖, , ,,,P是邊BC上的一動點,過點PPEAB,垂足為E,延長PE至點Q,使PQ=PC, 聯(lián)結交邊AB于點.

1)求AD的長;

2)設,的面積為y, y關于x的函數(shù)解析式,并寫出定義域;

3)過點C, 垂足為F, 聯(lián)結PF、QF, 試探索當點P在邊BC的什么位置時,為等邊三角形?請指出點P的位置并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(A類)已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=C.

(B類)已知如圖,四邊形ABCD中,AB=BC,A=C,求證:AD=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上線段的長度可以用線段端點表示的數(shù)進行減法運算得到,例如:如圖①,若點在數(shù)軸上分別對應的數(shù)為,則的長度可以表示為

請你用以上知識解決問題:

如圖②,一個點從數(shù)軸上的原點開始,先向左移動個單位長度到達點,再向右移動個單位長度到達點,然后向右移動個單位長度到達點.

請你在圖②的數(shù)軸上表示出三點的位置.

若點以每秒個單位長度的速度向左移動,同時,點和點分別以每秒個單位長度和個單位長度的速度向右移動,設移動時間為秒.

①當時,求的長度;

②試探究:在移動過程中,的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為緩解油價上漲給出租車待業(yè)帶來的成本壓力,某巿自20181117日起,調整出租車運價,調整方案見下列表格及圖象(其中a,b,c為常數(shù))

行駛路程

收費標準

調價前

調價后

不超過3km的部分

起步價6

起步價a

超過3km不超出6km的部分

每公里2.1

每公里b

超出6km的部分

每公里c

設行駛路程xkm時,調價前的運價y1(元),調價后的運價為y2(元)如圖,折線ABCD表示y2x之間的函數(shù)關系式,線段EF表示當0≤x≤3時,y1x的函數(shù)關系式,根據圖表信息,完成下列各題:

(1)填空:a=   ,b=   ,c=   

(2)寫出當x>3時,y1x的關系,并在上圖中畫出該函數(shù)的圖象

(3)函數(shù)y1y2的圖象是否存在交點?若存在,求出交點的坐標,并說明該點的實際意義,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在所給正方形網格圖中完成下列各題:(用直尺畫圖,保留痕跡)

(1)畫出格點ABC(頂點均在格點上)關于直線DE對稱的A1B1C1;

(2)在DE上畫出點Q,使QA+QC最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EAD上一點,FBA延長線上的一點,AF=AE,.

1)求證:ABE≌△ADF

2)線段BEDF有什么關系?證明你的結論.

查看答案和解析>>

同步練習冊答案