【題目】如圖,矩形ABCD中,BC>AB,E是AD上一點,△ABE沿BE折疊,點A恰好落在線段CE上的點F處.
(1)求證:CF=DE;
(2)設=m.
①若m=,試求∠ABE的度數(shù);
②設=k,試求m與k滿足的關系式.
【答案】(1)見解析;(2)①∠ABE=15°,②m2=2k﹣k2.
【解析】
(1)通過折疊前后兩個圖像全等,然后證明△CED≌△BCF即可;(2)由題知AB=BF,BC=AD通過=,得出=,判斷角度求解即可,由=m,=k 的得出邊之間的關系,在通過Rt△CED建立勾股定理方程化簡即可求出
(1)證明:由折疊的性質可知,∠BEA=∠BEF,
∵AD∥BC,
∴∠BEA=∠EBC,
∴∠BEF=∠EBC,
∴BC=CE;
∵AB=BF=CD, △CED和△BCF都為直角三角形
∴△CED≌△BCF
∴CF=DE;
(2)解:①由(1)得BC=CE
∵BC=AD
∴AD=CE
∵AB=BF
∴==
∵BCF都為直角三角形
∴∠FBC=60°
∴∠ABE=
②∵=k,=m,
∴AE=kAD,AB=mAD,
∴DE=AD﹣AE=AD(1﹣k),
在Rt△CED中,CE2=CD2+DE2,即AD2=(mAD)2+[AD(1﹣k)]2,
整理得,m2=2k﹣k2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,小聰同學利用直尺和圓規(guī)完成了如下操作:
①作的平分線交于點;
②作邊的垂直平分線,與相交于點;
③連接,.
請你觀察圖形解答下列問題:
(1)線段,,之間的數(shù)量關系是________;
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,點D在BC邊上(不與點B、點C重合),點E在AC的延長線上,DE=DA(如圖1).
(1)求證:∠BAD=∠EDC;
(2)點E關于直線BC的對稱點為M,連接DM,AM.
①依題意將圖2補全;
②若點D在BC邊上運動,DA與AM始終相等嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖, 在中, ,,,P是邊BC上的一動點,過點P作PE⊥AB,垂足為E,延長PE至點Q,使PQ=PC, 聯(lián)結交邊AB于點.
(1)求AD的長;
(2)設,的面積為y, 求y關于x的函數(shù)解析式,并寫出定義域;
(3)過點C作, 垂足為F, 聯(lián)結PF、QF, 試探索當點P在邊BC的什么位置時,為等邊三角形?請指出點P的位置并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(A類)已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=∠C.
(B類)已知如圖,四邊形ABCD中,AB=BC,∠A=∠C,求證:AD=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上線段的長度可以用線段端點表示的數(shù)進行減法運算得到,例如:如圖①,若點在數(shù)軸上分別對應的數(shù)為,則的長度可以表示為.
請你用以上知識解決問題:
如圖②,一個點從數(shù)軸上的原點開始,先向左移動個單位長度到達點,再向右移動個單位長度到達點,然后向右移動個單位長度到達點.
請你在圖②的數(shù)軸上表示出三點的位置.
若點以每秒個單位長度的速度向左移動,同時,點和點分別以每秒個單位長度和個單位長度的速度向右移動,設移動時間為秒.
①當時,求和的長度;
②試探究:在移動過程中,的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為緩解油價上漲給出租車待業(yè)帶來的成本壓力,某巿自2018年11月17日起,調整出租車運價,調整方案見下列表格及圖象(其中a,b,c為常數(shù))
行駛路程 | 收費標準 | |
調價前 | 調價后 | |
不超過3km的部分 | 起步價6元 | 起步價a 元 |
超過3km不超出6km的部分 | 每公里2.1元 | 每公里b元 |
超出6km的部分 | 每公里c元 |
設行駛路程xkm時,調價前的運價y1(元),調價后的運價為y2(元)如圖,折線ABCD表示y2與x之間的函數(shù)關系式,線段EF表示當0≤x≤3時,y1與x的函數(shù)關系式,根據圖表信息,完成下列各題:
(1)填空:a= ,b= ,c= .
(2)寫出當x>3時,y1與x的關系,并在上圖中畫出該函數(shù)的圖象.
(3)函數(shù)y1與y2的圖象是否存在交點?若存在,求出交點的坐標,并說明該點的實際意義,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在所給正方形網格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)畫出格點△ABC(頂點均在格點上)關于直線DE對稱的△A1B1C1;
(2)在DE上畫出點Q,使QA+QC最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AD上一點,F是BA延長線上的一點,AF=AE,.
(1)求證:△ABE≌△ADF
(2)線段BE與DF有什么關系?證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com