如圖,在平面直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣3,0),經(jīng)過A、O兩點(diǎn)作半徑為的⊙C,交y軸的負(fù)半軸于點(diǎn)B.
(1)求B點(diǎn)的坐標(biāo);
(2)過B點(diǎn)作⊙C的切線交x軸于點(diǎn)D,求直線BD的解析式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
補(bǔ)充完整三角形中位線定理,并加以證明:
(1)三角形中位線定理:三角形的中位線 ;
(2)已知:如圖,DE是△ABC的中位線,求證:DE∥BC,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
定義運(yùn)算:a⊗b=a(1﹣b).下面給出了關(guān)于這種運(yùn)算的幾種結(jié)論:①2⊗(﹣2)=6,②a⊗b=b⊗a,③若a+b=0,則(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,則a=0或b=1,其中結(jié)論正確的序號(hào)是( )
| A. | ①④ | B. | ①③ | C. | ②③④ | D. | ①②④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列函數(shù)(其中n為常數(shù),且n>1)
①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值隨x的值增大而增大的函數(shù)有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,已知y=﹣x2+bx+c(b、c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),點(diǎn)C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
(1)如圖,若拋物線經(jīng)過A、B兩點(diǎn),求拋物線的解析式.
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上并沿AC方向滑動(dòng)距離為時(shí),試證明:平移后的拋物線與直線AC交于x軸上的同一點(diǎn).
(3)在(2)的情況下,若沿AC方向任意滑動(dòng)時(shí),設(shè)拋物線與直線AC的另一交點(diǎn)為Q,取BC的中點(diǎn)N,試探究NP+BQ是否存在最小值?若存在,求出該最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
梧州市特產(chǎn)批發(fā)市場(chǎng)有龜苓膏粉批發(fā),其中A品牌的批發(fā)價(jià)是每包20元,B品牌的批發(fā)價(jià)是每包25元,小王需購(gòu)買A、B兩種品牌的龜苓膏共1000包.
(1)若小王按需購(gòu)買A、B兩種品牌龜苓膏粉共用22000元,則各購(gòu)買多少包?
(2)憑會(huì)員卡在此批發(fā)市場(chǎng)購(gòu)買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購(gòu)買會(huì)員卡并用此卡按需購(gòu)買1000包龜苓膏粉,共用了y元,設(shè)A品牌買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式.
(3)在(2)中,小王共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費(fèi)8元,若每包銷售價(jià)格A品牌比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的龜苓膏粉每包定價(jià)不低于多少元時(shí)才不虧本(運(yùn)算結(jié)果取整數(shù))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇海安縣城東鎮(zhèn)韓洋初中九年級(jí)上學(xué)期學(xué)業(yè)分析數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,△ABC內(nèi)接于⊙O,半徑為5,BC=6,CD⊥AB于D點(diǎn),則tan∠ACD的值為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com