已知:如圖,△ABC是等邊三角形,D、E分別是BA、CA的延長線上的點,且AD=AE,連接ED并延長到F,使得EF=EC,連接AF、CF、BE.
(1)求證:四邊形BCFD是平行四邊形;
(2)試指出圖中與AF相等的線段,并說明理由。
通過三角形全等吧求證
【解析】
試題分析:(1)根據(jù)定義兩組對邊分別平行的四邊形是平行四邊形,在本題中,因為△ABC為等邊三角形,AD、AE分別為CA、BA的延長線且AE=AD,所以△ADE也為等邊三角形,可知EF和BC平行,又因為EC=EF,所以△ECF也為等邊三角形,即CF和BD平行,來證明兩組對邊分別平行;
(2)從圖象觀察,AF在三角形ADF中,而和ADF形狀相同的是三角形ABE,所以,可試著證明兩三角形全等.
證明:(1)∵△ABC為等邊三角形,且AE=AD,
∴由題可知∠AED=∠ADE=∠EAD=60°
∴EF∥BC,
又∵EC=EF,
∴△ECF為等邊三角形,即∠EFC=∠EDB=60°,
∴CF∥BD
∴四邊形BCFD為平行四邊形.
(2)AF=EB.
在△AED中,∵AE=AD,∠EAD=60°,
∴∠BAE=120°,∠EDA=60°,
∴∠ADF=120°.
即∠EAB=∠ADF,
又由(1)知DF=BC=BA,
∴△ADF≌△EAB.
∴AF=EB.
考點:平行四邊形的判定
點評:本題考查了平行四邊形的判定,解題的關(guān)鍵是找準(zhǔn)題目中的已知條件,利用平行四邊形的定義進行解題.另外此題還考查了全等的應(yīng)用
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com