【題目】現(xiàn)定義新運(yùn)算“△”,對(duì)于任意有理數(shù)a,b,都有a△b=a2-ab+b,例如:3△5=32-3×5+5=-1,請(qǐng)根據(jù)上述知識(shí)解決問題:

(1)化簡(jiǎn):(x-1)△(2+x);

(2)若(1)中的代數(shù)式的值大于6而小于9,求x的取值范圍.

【答案】(1) -2x+5;(2) -2<x<-.

【解析】

(1)根據(jù)題意得出原式=(x-1)2-(x-1)(2+x)+(2+x),化簡(jiǎn)即可;

(2)根據(jù)題意得出不等式組,求出不等式組的解集即可.

(1)(x-1)(2+x),

=(x-1)2-(x-1)(2+x)+(2+x),

=x2-2x+1-2x-x2+2+x+2+x,

=-2x+5;

(2)由題意得不等式組

解不等式①得,x<-

解不等式②得,x>-2,

所以x的取值范圍是-2<x<-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的5個(gè)小球,其中紅球3個(gè),黑球2個(gè).
(1)先從袋中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為 , 若A為隨機(jī)事件,則m的取值為;
(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),求這個(gè)事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算.

1|3|﹣(2+0

2)(﹣3m2n2(﹣2m2÷6mn2

32xxy)﹣(x+2y)(xy

4[x2y2xx4y)﹣8xy]÷4y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(1,3),B(2,1),直角坐標(biāo)系中存在點(diǎn)C,使得O,A,B,C四點(diǎn)構(gòu)成平行四邊形,C點(diǎn)的坐標(biāo)為______________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC,BAC=120°,AC的垂直平分線EF交AC于點(diǎn)E,交BC于點(diǎn)F.試探索BF與CF的數(shù)量關(guān)系,寫出你的結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四幅圖像分別表示變量之間的關(guān)系,請(qǐng)按圖像的順序,將下面的四種情境與之對(duì)應(yīng)排序.

a.運(yùn)動(dòng)員推出去的鉛球(鉛球的高度與時(shí)間的關(guān)系);

b.靜止的小車從光滑的斜面滑下(小車的速度與時(shí)間的關(guān)系);

c.一個(gè)彈簧由不掛重物到所掛重物的質(zhì)量逐漸增加(彈簧的長(zhǎng)度與所掛重物的質(zhì)量的關(guān)系);

d.小明從A地到B地后,停留一段時(shí)間,然后按原來的速度原路返回(小明離A地的距離與時(shí)間的關(guān)系)

正確的順序是(  )

A. abcd B. abdc C. acbd D. acdb

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A,B,C,D,E,F(xiàn)是邊長(zhǎng)為1的正六邊形的頂點(diǎn),連接任意兩點(diǎn)均可得到一條線段.在連接兩點(diǎn)所得的所有線段中任取一條線段,取到長(zhǎng)度為 的線段的概率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市經(jīng)濟(jì)技術(shù)開發(fā)區(qū)某智能手機(jī)有限公司接到生產(chǎn)300萬部智能手機(jī)的訂單,為了盡快交貨,增開了一條生產(chǎn)線,實(shí)際每月生產(chǎn)能力比原計(jì)劃提高了50%,結(jié)果比原計(jì)劃提前5個(gè)月完成交貨,求每月實(shí)際生產(chǎn)智能手機(jī)多少萬部.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船位于碼頭M的南偏東45°方向,距離碼頭120海里的B處,漁船從B處沿正北方向航行一段距離后,到達(dá)位于碼頭北偏東60°方向的A處.

(1)求漁船從B到A的航行過程中與碼頭M之間的最小距離.
(2)若漁船以20海里/小時(shí)的速度從A沿AM方向行駛,求漁船從A到達(dá)碼頭M的航行時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案