【題目】如圖,矩形中,,將矩形繞點(diǎn)旋轉(zhuǎn)得到矩形,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在上,交于點(diǎn),在上取點(diǎn),使.
(1)求證:;
(2)求的度數(shù);
(3)若,求的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)15°;(3)2+2.
【解析】
(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折疊的性質(zhì)得到一對(duì)角相等,利用等角對(duì)等邊即可得證;
(2)由(1)得到△ABB′為等邊三角形,利用矩形的性質(zhì)及等邊三角形的內(nèi)角為60°,即可求出所求角度數(shù);
(3)連接AF,過(guò)A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B為等邊三角形,分別利用三角函數(shù)定義求出MF與AM,根據(jù)AM=BM,即BM+MF=BF即可求出.
(1)證明:∵在Rt△ABC中,AC=2AB,
∴∠ACB=∠AC′B′=30°,∠BAC=60°,
由旋轉(zhuǎn)可得:AB′=AB,∠B′AC′=∠BAC=60°,
∴∠EAC′=∠AC′B′=30°,
∴AE=C′E;
(2)解:由(1)得到△ABB′為等邊三角形,
∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,
∵BB'=B'F,
∴∠FBB′=∠B'FB=15°;
(3)解:連接AF,過(guò)A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B為等邊三角形,
∴∠AFB′=45°,∠BB′F=150°,
∵BB′=B′F,
∴∠B′FB=∠B′BF=15°,
∴∠AFM=30°,∠ABF=45°,
在Rt△AMF中,AM=BM=ABcos∠ABM=2=2,
在Rt△AMF中,MF=AM=2,
則BF=2+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上,若四邊形EGFH是菱形,則AE的長(zhǎng)是_________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王是“新星廠”的一名工人,請(qǐng)你閱讀下列信息:
信息一:工人工作時(shí)間:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時(shí)間的關(guān)系見(jiàn)下表:
生產(chǎn)甲種產(chǎn)品數(shù)(件) | 生產(chǎn)乙種產(chǎn)品數(shù)(件) | 所用時(shí)間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件計(jì)酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;
信息四:該廠工人每月收入由底薪和計(jì)酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;
(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時(shí)小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在△ABC中,AB、BC邊上的垂直平分線相交于點(diǎn)P.若∠BAC=50°,則∠BPC的度數(shù)為( 。
A.100°B.110°C.115°D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),△AOB為等邊三角形,P是x軸負(fù)半軸上一個(gè)動(dòng)點(diǎn)(不與原點(diǎn)O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ.
(1)求點(diǎn)B的坐標(biāo);
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大。蝗绺淖,請(qǐng)說(shuō)明理由;
(3)連接OQ,當(dāng)OQ∥AB時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2-2x-3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)點(diǎn)A的坐標(biāo)為 點(diǎn)B的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 ;
(2)設(shè)拋物線y=x2-2x-3的頂點(diǎn)坐標(biāo)為M,求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)某中學(xué)數(shù)學(xué)活動(dòng)小組為了調(diào)查居民的用水情況,從某社區(qū)的戶家庭中隨機(jī)抽取了戶家庭的月用水量,結(jié)果如下表所示:
月用水量(噸) | |||||||
戶數(shù) |
(1)求這戶家庭月用水量的平均數(shù)、眾數(shù)和中位數(shù);
(2)根據(jù)上述數(shù)據(jù),試估計(jì)該社區(qū)的月用水量;
(3)由于我國(guó)水資源缺乏,許多城市常利用分段計(jì)費(fèi)的辦法引導(dǎo)人們節(jié)約用水,即規(guī)定每個(gè)家庭的月基本用水量為(噸),家庭月用水量不超過(guò)(噸)的部分按原價(jià)收費(fèi),超過(guò)(噸)的部分加倍收費(fèi).你認(rèn)為上述問(wèn)題中的平均數(shù)、眾數(shù)和中位數(shù)中哪一個(gè)量作為月基本用水量比較合理?簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】再讀教材:
寬與長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱的美感.世界各國(guó)許多著名的建筑.為取得最佳的視覺(jué)效果,都采用了黃金矩形的設(shè)計(jì),下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)
第一步,在矩形紙片一端.利用圖①的方法折出一個(gè)正方形,然后把紙片展平.
第二步,如圖②.把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平.
第三步,折出內(nèi)側(cè)矩形的對(duì)角線 AB,并把 AB折到圖③中所示的AD處,
第四步,展平紙片,按照所得的點(diǎn)D折出 DE,使 DE⊥ND,則圖④中就會(huì)出現(xiàn)黃金矩形,
問(wèn)題解決:
(1)圖③中AB=________(保留根號(hào));
(2)如圖③,判斷四邊形 BADQ的形狀,并說(shuō)明理由;
(3)請(qǐng)寫(xiě)出圖④中所有的黃金矩形,并選擇其中一個(gè)說(shuō)明理由.
(4)結(jié)合圖④.請(qǐng)?jiān)诰匦?/span> BCDE中添加一條線段,設(shè)計(jì)一個(gè)新的黃金矩形,用字母表示出來(lái),并寫(xiě)出它的長(zhǎng)和寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)B、C的坐標(biāo)分別為(3,4)、(4,2),且AB平行于x軸,將Rt△ABC向左平移,得到Rt△A′B′C′.若點(diǎn)B′、C′同時(shí)落在函數(shù)y=(x>0)的圖象上,則k的值為( )
A.2B.4C.6D.8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com