【題目】在平面直角坐標系中,已知點A、B的坐標分別為(-,0)(0,-1),把點A繞坐標原點O順時針旋轉(zhuǎn)135°得點C,若點C在反比例函數(shù)y=的圖象上.

1)求反比例函數(shù)的表達式;

2)若點Dy軸上,點E在反比例函數(shù)y=的圖象上,且以點A、BD、E為頂點的四邊形是平行四邊形.請畫出滿足題意的示意圖并在示意圖的下方直接寫出相應的點D、E的坐標.

【答案】1y=;(2)示意圖見解析,E--),D0-1-)或E-,-),D0,-1+)或E , D

【解析】

1)根據(jù)旋轉(zhuǎn)和直角三角形的邊角關(guān)系可以求出點C的坐標,進而確定反比例函數(shù)的關(guān)系式;

2)分兩種情況進行討論解答,①點E在第三象限,由題意可得E的橫坐標與點A的相同,將A的橫坐標代入反比例函數(shù)的關(guān)系式,可求出縱坐標,得到E的坐標,進而得到AE的長,也是BD的長,因此DB的上方和下方,即可求出點D的坐標,②點E在第一象限,由三角形全等,得到E的橫坐標,代入求出縱坐標,確定E的坐標,進而求出點D的坐標.

1)由旋轉(zhuǎn)得:OC=OA=,∠AOC=135°,

過點CCMy軸,垂足為M,則∠COM=135°-90°=45°,

RtOMC中,∠COM=45°,OC=

OM=CM=1,

∴點C1,1),代入y=得:k=1,

∴反比例函數(shù)的關(guān)系式為:y=,

答:反比例函數(shù)的關(guān)系式為:y=

2)①當點E在第三象限反比例函數(shù)的圖象上,如圖1,圖2

∵點Dy軸上,AEDB是平行四邊形,

AEDB,AE=BDAEOA,

x=-時,y==-,

E-,-

B0,-1),BD=AE=,

當點DB的下方時,

D0,-1-

當點DB的上方時,

D0,-1+),

②當點E在第一象限反比例函數(shù)的圖象上時,如圖3

過點EENy軸,垂足為N,

ABED是平行四邊形,

AB=DE,AB=DE

∴∠ABO=EDO,

∴△AOB≌△END AAS),

EN=OA=,DN=OB=1,

x=時,代入y=得:y=,

E,),

ON=,OD=ON+DN=1+,

D01+

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校在一次社會實踐活動中,組織學生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會實踐活動的效果,學校隨機抽取了部分學生,對“最喜歡的景點”進行了問卷調(diào)查,并根據(jù)統(tǒng)計結(jié)果繪制了如下不完整的統(tǒng)計圖.其中最喜歡烈士陵園的學生人數(shù)與最喜歡博物館的學生人數(shù)之比為2:1,請結(jié)合統(tǒng)計圖解答下列問題:

(1)本次活動抽查了   名學生;

(2)請補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,最喜歡植物園的學生人數(shù)所對應扇形的圓心角是   度;

(4)該校此次參加社會實踐活動的學生有720人,請求出最喜歡烈士陵園的人數(shù)約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC,BD交于點O,且AC=12cm,BD=16cm.點P從點B出發(fā),沿BA方向勻速運動,速度為lcm/s;同時,直線EF從點D出發(fā),沿DB方向勻速運動,速度為lcm/s,EFBD,且與AD,BD,CD分別交于點E,Q.F,當直線EF停止運動時,點P也停止運動.連接PF,設(shè)運動時間為t(s)(0<t<8).解答下列問題:

(1)求菱形ABCD的面積;

(2)當t=1時,求QF長;

(3)是否存在某一時刻t,使四邊形APFD是平行四邊形?若存在,求出t值,若不存在,請說明理由;

(4)設(shè)DEF的面積為s(cm2),試用含t的代數(shù)式表示S,并求t為何值時,DEF的面積與BPC的面積相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ACB=90°經(jīng)過點B的直線l(l不與直線AB重合)與直線BC的夾角等于ABC,分別過點C、A做直線l的垂線,垂足分別為點D、E.

(1)問題發(fā)現(xiàn)

ABC=30°,如圖,則=

ABC=45°,如圖,則= ;

(2)拓展探究

當0°ABC90°,的值有無變化?請僅就圖的情形給出證明.

(3)問題解決

若直線CE、AB交于點F,=,CD=4,請直接寫出線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、cRtABCRtBED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根

x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是ABC面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠將地處A,B兩地的兩個小工廠合成一個大廠,為了方便A,B兩地職工的聯(lián)系,企業(yè)準備在相距2kmA,B兩地之間修一條筆直的公路(即圖中的線段AB),經(jīng)測量在A地的北偏東60°方向,B地的北偏西45°方向的C處有一以C點為中心,半徑為0.7km的圓形公園,則修筑的這條公路會不會穿過公園?為什么?(提示:判斷以點C為圓心的圓與AB的關(guān)系)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線PA交O于A、B兩點,AE是O的直徑,點C為O上一點,且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、﹣2、3、﹣4,這些卡片除數(shù)字外都相同.王興從口袋中隨機抽取一張卡片,鐘華從剩余的三張卡片中隨機抽取一張,求兩張卡片上數(shù)字之積.

(1)請你用畫樹狀圖或列表的方法,列出兩人抽到的數(shù)字之積所有可能的結(jié)果.

(2)求兩人抽到的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場進行促銷,購物滿額即可獲得1次抽獎機會,抽獎袋中裝有紅色、黃色、白色三種除顏色外都相同的小球,從袋子中摸出1個球,紅色、黃色、白色分別代表一、二、三等獎.

1)若小明獲得1次抽獎機會,小明中獎是   事件;(填隨機、必然、不可能)

2)小明觀察一段時間后發(fā)現(xiàn),平均每8個人中會有1人抽中一等獎,2人抽中二等獎,若袋中共有24個球,請你估算袋中白球的數(shù)量;

3)在(2)的條件下,如果在抽獎袋中減少3個白球,那么抽獎一次恰好抽中一等獎的概率是多少?請說明理由.

查看答案和解析>>

同步練習冊答案