幾何模型:
  條件:如下左圖,A、B是直線同旁的兩個定點.
  問題:在直線上確定一點P,使的值最。
  方法:作點A關于直線l的對稱點,連結交l點P,則的值最。ú槐刈C明)。
模型應用:
(1)如圖1,正方形的邊長為2,E為的AB中點,P是AC上一動點.連結,由正方形對稱性可知,B與D關于直線對稱.連結交AC于P,則的最小值是_____ ;
(2)如圖2,的半徑為2,點上,,,P是OB上一動點,求的最小值;
(3)如圖3,,P是內一點,分別是上的動點,求周長的最小值。
(1);(2);(3)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.
精英家教網(wǎng)
問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最。ú槐刈C明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是
 
;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)幾何模型:條件:如圖,A、B是直線l同旁的兩個定點.
問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′P+PB=A′B,
由“兩點之間,線段最短”可知,點P即為所求的點.
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.則PB+PE的最小值是
 
;
(2)如圖2,∠AOB=45°,P是∠AOB內一定點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.(要求畫出示意圖,寫出解題過程)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

幾何模型:
條件:如圖,A、B是直線l同旁的兩個定點.
問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是
5
5
;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑,AB⊥MN于點E,CD⊥MN于點F,P為EF上的任意一點,求PA+PC的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解題:
【幾何模型】
條件:如圖1,A、B是直線l同旁的兩個定點.
問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′P+PB=A′B,
由“兩點之間,線段最短”可知,點P即為所求的點.

【模型應用】
如圖2所示,兩個村子A、B在一條河CD的同側,A、B兩村到河邊的距離分別為AC=1千米,BD=3千米,CD=3千米.現(xiàn)要在河邊CD上建造一水廠,向A、B兩村送水,鋪設水管的工程費用為每千米15000元,請你在CD上選擇水廠位置,使鋪設水管的費用最省,并求出最省的鋪設水管的費用W.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

幾何模型:
條件:如圖1,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最。ú槐刈C明).
模型應用:
(1)如圖2,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是
5
5
;
(2)如圖3,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值是
2
3
2
3
;
(3)如圖4,∠AOB=45°,P是∠AOB內一點,PO=5,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

同步練習冊答案