如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對(duì)角線AC,再分別把△ABC、△ADC沿對(duì)角線AC翻折交AD、BC于點(diǎn)F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.
(1)四邊形AECF是菱形,
∵四邊形ABCD是矩形,
∴ADBC,
∴∠DAC=∠ACB,
由折疊的性質(zhì)得:∠CAE=∠CAD,∠ACF=∠ACB,
∴∠CAE=∠CAD=∠ACF=∠ACB,
∴AECF,EC=EA,
∴四邊形AECF是菱形.

(2)設(shè)BE=x,則CE=10-x,
AE=
BE2+AB2
=
x2+36

∵四邊形AECF是菱形,
∴AE2=CE2
∴x2+36=(10-x)2,
解得:x=3.2,
S菱形=10×6-2×
1
2
×6×3.2=40.8(cm2)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知梯形ABCD中,CDAB,將梯形對(duì)折,使點(diǎn)D,C分別落在AB上的D′,C′處,折痕為EF,若CD=3cm,AB=6cm,則AD′+BC′=______cm,EF=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是邊長為9的正方形紙片,沿MN折疊,使點(diǎn)B落在CD邊上的B′處,點(diǎn)A對(duì)應(yīng)點(diǎn)A′,且B′C=3,求CN和AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了探索代數(shù)式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運(yùn)用了“數(shù)形結(jié)合”思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則AC=
x2+1
CE=
(8-x)2+25
,則問題即轉(zhuǎn)化成求AC+CE的最小值.
(1)我們知道當(dāng)A、C、E在同一直線上時(shí),AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于______,此時(shí)x=______;
(2)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,A(0,x)、B(y,0)、C(z,0),在B、C兩點(diǎn)各有一個(gè)平面鏡,其中在B點(diǎn)的平面鏡沿x軸方向,從P點(diǎn)發(fā)射兩條光線PA、
PB,反射光線BD經(jīng)A點(diǎn)和反射光線CD相交.
(1)若x、y、z滿足(2x+y-1)2+|y+z-1|=-(z-2)2,求△ABC的面積;
(2)若兩條入射光線PA、PB的夾角(∠BPC)為28°,要想讓兩條反射光線
BD、CD的夾角(∠BDC)為36°,問平面鏡MN與x軸夾角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形紙片ABCD的邊長AB=4,AD=2.將矩形紙片沿EF折疊,使點(diǎn)A與點(diǎn)C重合,折疊后在其一面著色.
(1)GC的長為______,F(xiàn)G的長為______;
(2)著色面積為______;
(3)若點(diǎn)P為EF邊上的中點(diǎn),則CP的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,軸對(duì)稱圖形ABCDEFG的面積為56,∠A=90°,則點(diǎn)D的坐標(biāo)是( 。
A.(0,6)B.(0,6.5)C.(0,7)D.(0,7.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

取一張矩形的紙進(jìn)行折疊,具體操作過程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖1;
第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為Bn,得Rt△ABE,如圖2;
第三步:沿EB線折疊得折痕EF,如圖3;
利用展開圖4探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一長方形紙片ABCD,按如圖方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF.
(1)請說明△DEF是等腰三角形;
(2)若AD=3,AB=9,求BE的長;
(3)若連接BF,試說明四邊形DEBF是菱形.

查看答案和解析>>

同步練習(xí)冊答案