【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是對角線BD上的一點(diǎn),把△ABE沿著直線AE翻折得到△AFE,且點(diǎn)F恰好落在AD邊上,連接BF.
(1)求△DEF的周長;
(2)求sin∠BFE的值.
【答案】(1)12;(2)
【解析】
解法一:(1)首先根據(jù)矩形的性質(zhì)和勾股定理得出BD的長度,然后由折疊的性質(zhì)得出,則的周長為,代入相應(yīng)的數(shù)值即可計(jì)算;
(2)作于點(diǎn),首先由得出,然后利用求出FG的長度,利用勾股定理求出BF的長度,則,則答案可求;
解法二:(1)首先根據(jù)矩形的性質(zhì)和勾股定理得出BD的長度,然后由折疊的性質(zhì)得出,則的周長為,代入相應(yīng)的數(shù)值即可計(jì)算;
(2)延長交于點(diǎn),首先軸對稱性質(zhì)可得,進(jìn)而得出為等腰直角三角形,然后利用得出,進(jìn)而求出BE,EF的長度,然后利用勾股定理求出BF的長度,進(jìn)而求出FN的長度,再利用勾股定理求出EN的長度,最后利用即可求解.
解法一: 四邊形是矩形,
.
在中,,
由勾股定理得.
由軸對稱性質(zhì)可得,
,
的周長;
作于點(diǎn),
,
.
,
,
解得.
在中,,由勾股定理得.
在中,
,
.
解法二:同解法一;
如圖2,延長交于點(diǎn),記的交點(diǎn)為,
由軸對稱性質(zhì)可得,
又,
為等腰直角三角形,且,
,
,
即,
解得,
.
在中,,
由勾股定理得,
.
在中,,
由勾股定理得,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為調(diào)查“停課不停學(xué)”期間九年級學(xué)生平均每天上網(wǎng)課時長,隨機(jī)抽取了名九年級學(xué)生做網(wǎng)絡(luò)問卷調(diào)查.共四個選項(xiàng):小時以下)、小時)、小時), 小時以上),每人只能選一
項(xiàng).并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
被調(diào)查學(xué)生平均每天上網(wǎng)課時間統(tǒng)計(jì)表
時長 | 所占百分比 |
合計(jì) |
根據(jù)以上信息,解答下列問題:
, ,
補(bǔ)全條形統(tǒng)計(jì)圖;
該校有九年級學(xué)生名,請你估計(jì)仝校九年級學(xué)生平均每天上網(wǎng)課時長在小時及以上的共多少名;
在被調(diào)查的對象中,平均每天觀看時長超過小時的,有名來自九班,名來自九班,其余都來自九班,現(xiàn)教導(dǎo)處準(zhǔn)備從選項(xiàng)中任選兩名學(xué)生進(jìn)行電話訪談,請用列表法或畫樹狀圖的方法求所抽取的名學(xué)生恰好來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=5,∠ABC=60°. 按以下步驟作圖:①以C為圓心,以適當(dāng)長為半徑做弧,交CB、CD于M、N兩點(diǎn);②分別以M、N為圓心,以大于MN的長為半徑作弧,兩弧相交于點(diǎn)E,作射線CE交BD于點(diǎn)O,交AD邊于點(diǎn)F;則BO的長度為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年3月20日,深圳市民中心及周邊樓宇為當(dāng)日返回深圳的援鄂醫(yī)療隊(duì)員亮燈,歡迎最美逆行者回家.小洪在歡迎英雄回家現(xiàn)場,如圖,若他觀測到英雄畫像電子屏頂端A和底端C的仰角分別為∠α和∠β,小洪所站位置E到電子屏邊緣AC垂直地面的B點(diǎn)距離為m米,那么英雄畫像電子屏高AC為( )
A.米B.mtan(α﹣β)米
C.m(tanα﹣tanβ)米D.米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線y1=kx+3與雙曲線(x>0)交于點(diǎn)P,PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,直線y1=kx+3分別交x軸、y軸于點(diǎn)C和點(diǎn)D,且S△DBP=27,.
(1)求OD和AP的長;
(2)求m的值;
(3)如圖2,點(diǎn)M為直線BP上的一個動點(diǎn),連接CB、CM,當(dāng)△BCM為等腰三角形時,請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱可入肺顆粒物.將0.0000025用科學(xué)記數(shù)法表示為
A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面系中,一次函數(shù)的圖像經(jīng)過定點(diǎn)A,反比例函數(shù)的圖像經(jīng)過點(diǎn)A,且與一次函數(shù)的圖像相交于點(diǎn)B(,m).
(1)求m、a的值;
(2)設(shè)橫坐標(biāo)為n的點(diǎn)P在反比例函數(shù)圖象的第三象限上,且在點(diǎn)B右側(cè),連接AP、BP,△ABP的面積為12,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩張完全重合的矩形紙片,將其中一張繞點(diǎn)順時針旋轉(zhuǎn)后得到矩形(如圖1),連接,,若,.
(1)試探究線段與線段的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)把與剪去,將繞點(diǎn)順時針旋轉(zhuǎn)得,邊交于點(diǎn)(如圖2),設(shè)旋轉(zhuǎn)角為,當(dāng)為等腰三角形時,求的度數(shù);
(3)若將沿方向平移得到(如圖3),與交于點(diǎn),與交于點(diǎn),當(dāng)時,求平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com