【題目】如圖,△ABC中,AB=AC=2,BC邊上有10個(gè)不同的點(diǎn)P1,P2,……,P10, 記(i = 1,2,……,10),那么 M1+M2+……+M10的值為( )
A. 4 B. 14 C. 40 D. 不能確定
【答案】C
【解析】
作AD⊥BC于D.根據(jù)勾股定理,得APi2=AD2+DPi2=AD2+(BD﹣BPi)2=AD2+BD2﹣2BDBPi+BPi2,PiBPiC=PiB(BC﹣PiB)=2BDBPi﹣BPi2,從而求得Mi=AD2+BD2,即可求解.
作AD⊥BC于D,則BC=2BD=2CD.
根據(jù)勾股定理,得:
APi2=AD2+DPi2=AD2+(BD﹣BPi)2=AD2+BD2﹣2BDBPi+BPi2,
又PiBPiC=PiB(BC﹣PiB)=2BDBPi﹣BPi2,
∴Mi=AD2+BD2=AB2=4,∴M1+M2+…+M10=4×10=40.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中錯(cuò)誤的有( )個(gè)
①絕對(duì)值相等的兩數(shù)相等.②若a,b互為相反數(shù),則=﹣1.③如果a大于b,那么a的倒數(shù)小于b的倒數(shù).④任意有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示.⑤x2﹣2x﹣33x3+25是五次四項(xiàng).⑥兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而。咭粋(gè)數(shù)的相反數(shù)一定小于或等于這個(gè)數(shù).⑧正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的任何次冪都是負(fù)數(shù).
A. 4個(gè) B. 5個(gè) C. 6個(gè) D. 7個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某專(zhuān)賣(mài)店有 A,B 兩種商品.已知在打折前,買(mǎi) 20 件 A 商品和 10 件B 商品用了 400 元;買(mǎi) 30 件 A 商品和 20 件 B 商品用了 640 元.A,B 兩種商品打相同折以后,某人買(mǎi) 100 件 A 商品和 200 件 B 商品一共比不打折少花 640 元,計(jì)算打了多少折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一慢車(chē)和一快車(chē)沿相同路線(xiàn)從A地到B地,所行的路程與時(shí)間的函數(shù)圖象如圖所示.請(qǐng)你根據(jù)圖象,回答下列問(wèn)題:
(1)慢車(chē)比快車(chē)早出發(fā)小時(shí),快車(chē)追上慢車(chē)時(shí)行駛了千米,快車(chē)比慢車(chē)早小時(shí)到達(dá)B地;
(2)在下列3個(gè)問(wèn)題中任選一題求解(多做不加分): ①快車(chē)追上慢車(chē)需幾個(gè)小時(shí)?
②求慢車(chē)、快車(chē)的速度;
③求A、B兩地之間的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:Rt△ABC中,∠ACB=90°,CA=3,CB=4,設(shè)P,Q分別為AB邊,CB邊上的動(dòng)點(diǎn),它們同時(shí)分別從A,C出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),設(shè)P,Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求△CPQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并求出S的最大值.
(2)t為何值時(shí),△CPQ為直角三角形.
(3)①探索:△CPQ是否可能為正三角形,說(shuō)明理由.
②P,Q兩點(diǎn)同時(shí)出發(fā),若點(diǎn)P的運(yùn)動(dòng)速度不變,試改變點(diǎn)Q的運(yùn)動(dòng)速度,使△CPQ為正三角形,求出點(diǎn)Q的運(yùn)動(dòng)速度和此時(shí)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題
(1)【閱讀發(fā)現(xiàn)】如圖①,在△ABC中,∠ACB=45°,AD⊥BC于點(diǎn)D,E為AD上一點(diǎn),且DE=BD,可知AB=CE.
(2)【類(lèi)比探究】如圖②,在正方形ABCD中,對(duì)角線(xiàn)AC與BD交于點(diǎn)O,E是OC上任意一點(diǎn),AG⊥BE于點(diǎn)G,交BD于點(diǎn)F.判斷AF與BE的數(shù)量關(guān)系,并加以證明.
(3)【推廣應(yīng)用】在圖②中,若AB=4,BF= ,則△AGE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)如圖,在等腰直角三角形MNC中,CN=MN=,將△MNC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到△ABC,連接AM,BM,BM交AC于點(diǎn)O.
(1)∠NCO的度數(shù)為________;
(2)求證:△CAM為等邊三角形;
(3)連接AN,求線(xiàn)段AN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B在x軸上
(1)在坐標(biāo)系中求作一點(diǎn)M,使得點(diǎn)M到點(diǎn)A,點(diǎn)B和原點(diǎn)O這三點(diǎn)的距離相等,在圖中保留作圖痕跡,不寫(xiě)作法;
(2)若函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)M,且sin∠OAB= ,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com