如圖6所示,在四邊形ABCD中,,對(duì)角線AC與BD相交于點(diǎn)O.若不增加任何字母與輔助線,要使得四邊形ABCD是正方形,則還需增加的一個(gè)條件是

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點(diǎn)O,E,F(xiàn)分別是AD、BC的中點(diǎn),連接EF,分別交AC、BD于點(diǎn)M,N,試判斷△OMN的形狀,并加以證明;(提示:利用三角形中位線定理)
(2)如圖2,在四邊形ABCD中,若AB=CD,E,F(xiàn)分別是AD、BC的中點(diǎn),連接FE并延長(zhǎng),分別與BA,CD的延長(zhǎng)線交于點(diǎn)M,N,請(qǐng)?jiān)趫D2中畫(huà)圖并觀察,圖中是否有相等的角?若有,請(qǐng)直接寫(xiě)出結(jié)論:
 

(3)如圖3,在△ABC中,AC>AB,點(diǎn)D在AC上,AB=CD,E,F(xiàn)分別是AD、BC的中點(diǎn),連接FE并延長(zhǎng),與BA的延長(zhǎng)線交于點(diǎn)M,若∠FEC=45°,判斷點(diǎn)M與以AD為直徑的圓的位置關(guān)系,并簡(jiǎn)要說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

操作探究自我操作:如圖1所示,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,利用此圖,作一對(duì)以點(diǎn)O為對(duì)稱(chēng)中心的全等△MOA和△NOB,并使A、B兩點(diǎn)都在直線PQ上.(只保留作圖痕跡,不寫(xiě)作法)
精英家教網(wǎng)
(1)探究1:如圖2所示,在四邊形ABCD中,AB∥CD,點(diǎn)E為BC的中點(diǎn),∠BAE=∠EAF,AF與DC相交于點(diǎn)F,試探究線段AB與AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
(2)探究2:如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.試探究線段AB與DF,CF之間的等量關(guān)系,并證明你的結(jié)論.
(3)發(fā)現(xiàn):如圖3所示,DE,BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:n,∠BAE=∠EDF,CF∥AB.則線段AB與DF,CF之間的等量關(guān)系為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖6所示,在四邊形ABCD中,,對(duì)角線AC與BD相交于點(diǎn)O.若不增加任何字母與輔助線,要使得四邊形ABCD是正方形,則還需增加的一個(gè)條件是

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省衢州市共同體初一第一學(xué)期期末數(shù)學(xué)卷 題型:填空題

如圖6所示,在四邊形ABCD中,,對(duì)角線AC與BD相交于點(diǎn)O.若不增加任何字母與輔助線,要使得四邊形ABCD是正方形,則還需增加的一個(gè)條件是

 

查看答案和解析>>

同步練習(xí)冊(cè)答案