【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4)
(1)請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 , 請在y軸右側(cè)畫出△A2B2C2 , 并求出∠A2C2B2的正弦值.
【答案】
(1)
解:請畫出△ABC向左平移6個單位長度后得到的△A1B1C1,如圖1所示,
(2)
解:以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2,請在y軸右側(cè)畫出△A2B2C2,如圖2所示,
∵A(2,2),C(4,﹣4),B(4,0),
∴直線AC解析式為y=﹣3x+8,與x軸交于點D( ,0),
∵∠CBD=90°,
∴CD= = ,
∴sin∠DCB= = = .
∵∠A2C2B2=∠ACB,
∴sin∠A2C2B2=sin∠DCB=
【解析】本題考查位似變換、平移變換等知識,銳角三角函數(shù)等知識,解題的關(guān)鍵是理解位似變換、平移變換的概念,記住銳角三角函數(shù)的定義,屬于中考?碱}型.
科目:初中數(shù)學 來源: 題型:
【題目】已知在△ABC中,∠B=90°,以AB上的一點O為圓心,以O(shè)A為半徑的圓交AC于點D,交AB于點E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點,E是OB的中點,當BC=2時,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費90元;后又購買了1千克桂味和2千克糯米糍,共花費55元.(每次兩種荔枝的售價都不變)
(1)求桂味和糯米糍的售價分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請設(shè)計一種購買方案,使所需總費用最低.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C,E是直線l兩側(cè)的點,以C為圓心,CE長為半徑畫弧交l于A,B兩點,又分別以A,B為圓心,大于 AB的長為半徑畫弧,兩弧交于點D,連接CA,CB,CD,下列結(jié)論不一定正確的是( )
A.CD⊥l
B.點A,B關(guān)于直線CD對稱
C.點C,D關(guān)于直線l對稱
D.CD平分∠ACB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙二人在環(huán)形跑道上同時同地出發(fā),同向運動.若甲的速度是乙的速度的2倍,則甲運動2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,則甲運動 周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,則甲運動 周,甲、乙第一次相遇,…,以此探究正常走時的時鐘,時針和分針從0點(12點)同時出發(fā),分針旋轉(zhuǎn)周,時針和分針第一次相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,E為格點,B,F(xiàn)為小正方形邊的中點,C為AE,BF的延長線的交點.
(1)AE的長等于;
(2)若點P在線段AC上,點Q在線段BC上,且滿足AP=PQ=QB,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ,并簡要說明點P,Q的位置是如何找到的(不要求證明) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對應(yīng)值:
x | … | 1 | 2 | 3 | 5 | 7 | 9 | … |
y | … | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | … |
小騰根據(jù)學習函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.
下面是小騰的探究過程,請補充完整:
(1)如圖,在平面直角坐標系xOy中,描出了以上表格中各對對應(yīng)值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應(yīng)的函數(shù)值y約為
②該函數(shù)的一條性質(zhì):
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一列按一定順序和規(guī)律排列的數(shù):
第一個數(shù)是 ;
第二個數(shù)是 ;
第三個數(shù)是 ;
…
對任何正整數(shù)n,第n個數(shù)與第(n+1)個數(shù)的和等于 .
(1)經(jīng)過探究,我們發(fā)現(xiàn):
設(shè)這列數(shù)的第5個數(shù)為a,那么 , , ,哪個正確?
請你直接寫出正確的結(jié)論;
(2)請你觀察第1個數(shù)、第2個數(shù)、第3個數(shù),猜想這列數(shù)的第n個數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個數(shù)與第(n+1)個數(shù)的和等于 ”;
(3)設(shè)M表示 , , ,…, ,這2016個數(shù)的和,即 ,
求證: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下表是這種幼樹在移植過程中的一組數(shù)據(jù):
移植的棵數(shù)n | 1000 | 1500 | 2500 | 4000 | 8000 | 15000 | 20000 | 30000 |
成活的棵數(shù)m | 865 | 1356 | 2220 | 3500 | 7056 | 13170 | 17580 | 26430 |
成活的頻率 | 0.865 | 0.904 | 0.888 | 0.875 | 0.882 | 0.878 | 0.879 | 0.881 |
估計該種幼樹在此條件下移植成活的概率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com