平面直角坐標(biāo)系中有一張矩形紙片OABC,O為坐標(biāo)原點(diǎn),A點(diǎn)坐標(biāo)為(10,0),C點(diǎn)坐標(biāo)為(0,6),D是BC邊上的動(dòng)點(diǎn)(與點(diǎn)B、C不重合).如圖②,將△COD沿OD翻折,得到△FOD;再在AB邊上選取適當(dāng)?shù)狞c(diǎn)E,將△BDE沿DE翻折,得到△GDE,并使直線DG,DF重合.
(1)圖①中,若△COD翻折后點(diǎn)F落在OA邊上,求直線DE的解析式;
(2)設(shè)(1)中所求直線DE與x軸交于點(diǎn)M,請(qǐng)你猜想過點(diǎn)M、C且關(guān)于y軸對(duì)稱的拋物線與直線DE的公共點(diǎn)的個(gè)數(shù),在圖①的圖形中,通過計(jì)算驗(yàn)證你的猜想;
(3)圖②中,設(shè)E(10,b),求b的最小值.

解:
(1)已知A(10,0),C(0,6),由折疊可知D(6,6),E(10,2),
設(shè)直線DE解析式:y=kx+b,則,
解得
∴直線DE的解析式為:y=-x+12;

(2)過點(diǎn)M、C且關(guān)于y軸對(duì)稱的拋物線與直線DE的公共點(diǎn)只有一個(gè);
設(shè)拋物線解析式y(tǒng)=ax2+6,
由y=-x+12:得M(12,0),
把M(12,0)代入拋物線解析式得a=-,
聯(lián)立
得x1=x2=12;
故公共點(diǎn)唯一,是(12,0);

(3)設(shè)CD=a,∵AE=b,
∴DB=10-a,BE=6-b,由折疊可知∠CDF=2∠CDO,∠BDG=2∠BDE,而∠CDF+∠BDG=180°,
∴2∠CDO+2∠BDE=180°,∠CDO+∠BDE=90°,
又∵∠CDO+∠COD=90°
∴∠COD=∠BDE
∴△COD∽△BDE
==
解得b=a2-a+6=(a-5)2+
故當(dāng)a=5時(shí),b的最小值是
分析:(1)由于折疊前后三角形全等,可得出D、E兩點(diǎn)坐標(biāo),可求直線DE解析式;
(2)由于拋物線過點(diǎn)C(0,6),對(duì)稱軸是y軸,可設(shè)拋物線解析式y(tǒng)=ax2+6,由y=-x+12:得M(12,0),將M點(diǎn)代入拋物線解析式可確定解析式,聯(lián)立直線與拋物線解析式可得唯一點(diǎn)坐標(biāo);
(3)由折疊性質(zhì)可證△COD∽△BDE,得出相似比,設(shè)CD=a,∵AE=b,∴DB=10-a,BE=6-b,可得出a與b的二次函數(shù)關(guān)系式,用二次函數(shù)性質(zhì)解答本題.
點(diǎn)評(píng):本題考查了坐標(biāo)系里的軸對(duì)稱問題,運(yùn)用軸對(duì)稱的性質(zhì)求點(diǎn)的坐標(biāo)及函數(shù)解析式,會(huì)用全等,相似的知識(shí)解答有關(guān)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中有一張矩形紙片OABC,O為坐標(biāo)原點(diǎn),A點(diǎn)坐標(biāo)為(10,0),C點(diǎn)坐標(biāo)為(0,6),D是BC邊上的動(dòng)點(diǎn)(與點(diǎn)B、C不重合).如圖②,將△COD沿OD翻折,得到△FOD;再在AB邊上選取適當(dāng)?shù)狞c(diǎn)E,將△BDE沿DE翻折,得到△GDE,并使直線DG,DF重合.
(1)圖①中,若△COD翻折后點(diǎn)F落在OA邊上,求直線DE的解析式;
(2)設(shè)(1)中所求直線DE與x軸交于點(diǎn)M,請(qǐng)你猜想過點(diǎn)M、C且關(guān)于y軸對(duì)稱的拋物線與直線DE的公共點(diǎn)的個(gè)數(shù),在圖①的圖形中,通過計(jì)算驗(yàn)證你的猜想;
(3)圖②中,設(shè)E(10,b),求b的最小值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,
2
)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
精英家教網(wǎng)(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對(duì)稱軸;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請(qǐng)說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對(duì)應(yīng)點(diǎn)為A,點(diǎn)N的對(duì)應(yīng)點(diǎn)為B,點(diǎn)H的對(duì)應(yīng)點(diǎn)為C);
(2)求出過A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)試設(shè)計(jì)一種平移使(2)中的拋物線經(jīng)過四邊形ABCO的對(duì)角線交點(diǎn);
(4)截取CE=OF=AG=m,且E,F(xiàn),G分別在線段CO,OA,AB上,四邊精英家教網(wǎng)形BEFG是否存在鄰邊相等的情況?若存在,請(qǐng)直接寫出此時(shí)m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中有一矩形ABCO(O為原點(diǎn)),點(diǎn)A、C分別在x軸、y軸上,且C點(diǎn)坐標(biāo)為(0,6);將BCD沿BD折疊(D點(diǎn)在OC邊上),使C點(diǎn)落在OA邊的E點(diǎn)上,并將BAE沿BE折疊,恰好使點(diǎn)A落在BD的點(diǎn)F上.
(1)直接寫出∠ABE、∠CBD的度數(shù),并求折痕BD所在直線的函數(shù)解析式;
(2)過F點(diǎn)作FG⊥x軸,垂足為G,F(xiàn)G的中點(diǎn)為H,若拋物線y=ax2+bx+c經(jīng)過B、H、D三點(diǎn),求拋物線的函數(shù)解析式;
(3)若點(diǎn)P是矩形內(nèi)部的點(diǎn),且點(diǎn)P在(2)中的拋物線上運(yùn)動(dòng)(不含B、D點(diǎn)),過點(diǎn)P作PN⊥BC分別交BC和BD于點(diǎn)N、M,設(shè)h=PM-MN,試求出h與P點(diǎn)橫坐標(biāo)x的函數(shù)解析式,并畫出該函數(shù)的簡(jiǎn)圖,分別寫出使PM<NM、PM=MN、PM>MN成立的x的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中有一條“魚”.它有6個(gè)頂點(diǎn),則下列說法正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案