【題目】如圖,在△ACD和△BCE中, ACBC,ADBECDCE,∠ACE55°,∠BCD155°,ADBE相交于點(diǎn)P,則∠BPD的度數(shù)為( 。

A.110°B.125°C.130°D.155°

【答案】C

【解析】

根據(jù)ACBC,ADBE,CDCE得出,據(jù)此求出∠ACB度數(shù),再利用三角形內(nèi)角和求得∠APB=ACB,進(jìn)一步求出答案即可.

在△ACD與△BCE中,

ACBC,ADBE,CDCE,

,

∴∠ACD=BCE,∠A=B

∴∠BCA+∠ACE=ACE+∠ECD,

∴∠ACB=ECD=(BCD-∠ACE)=50°,

∵∠B+∠ACB=A+∠APB

∴∠APB=ACB=50°

∴∠BPD=180°50°=130°.

所以答案為C選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在全省各大景區(qū)都在流行真人CS“娛樂項(xiàng)目,其中有一個(gè)快速搶點(diǎn)游戲,游戲規(guī)則:如圖,用繩子圍成的一個(gè)邊長為10m的正方形ABCD場(chǎng)地中,游戲者從AB邊上的點(diǎn)E處出發(fā),分別先后趕往邊BC、CD、DA上插小旗子,最后回到點(diǎn)已知,則游戲者所跑的最少路程是多少______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)南充市創(chuàng)建全國衛(wèi)生城市的號(hào)召,某校1 500名學(xué)生參加了衛(wèi)生知識(shí)競(jìng)賽,成績記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,根據(jù)圖表信息,以下說法不正確的是( )

A.樣本容量是200

B.D等所在扇形的圓心角為15°

C.樣本中C等所占百分比是10%

D.估計(jì)全校學(xué)生成績?yōu)锳等大約有900人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】熱愛學(xué)習(xí)的小明同學(xué)在網(wǎng)上搜索到下面的文字材料:

x軸上有兩個(gè)點(diǎn)它們的坐標(biāo)分別為.則這兩個(gè)點(diǎn)所成的線段的長為;同樣,若在y軸上的兩點(diǎn)坐標(biāo)分別為(0,b)(0,d),則這兩個(gè)點(diǎn)所成的線段的長為|b-d|.如圖1,在直角坐標(biāo)系中的任意兩點(diǎn)P1,P2,其坐標(biāo)分別為(a,b)(c,d),分別過這兩個(gè)點(diǎn)作兩坐標(biāo)軸的平行線,構(gòu)成一個(gè)直角三角形,其中直角邊P1Q=|a-c|,P2Q=|b-d|,利用勾股定理可得,線段P1 P2的長為.

根據(jù)上面材料,回答下面的問題:

1)在平面直角坐標(biāo)系中,已知,,則線段AB的長為_____;

2)若點(diǎn)Cy軸上,點(diǎn)D的坐標(biāo)是,且,則點(diǎn)C的坐標(biāo)是_____;

3)如圖2,在直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為,點(diǎn)Cy軸上的一個(gè)動(dòng)點(diǎn),且A,B,C三點(diǎn)不在同一條直線上,求ABC周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.

(1)若方程有兩個(gè)實(shí)數(shù)根,求m的取值范圍;

(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且x1x2-x1-x2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在M處,若∠EFM125°,則∠ABE____________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,P是拋物線y=-x2+3x上一點(diǎn),且在x軸上方,過點(diǎn)P分別向x軸、y軸作垂線,得到矩形PMON.若矩形PMON的周長隨點(diǎn)P的橫坐標(biāo)m增大而增大,則m的取值范圍是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,ACBAD的角平分線.

1)求證:ABC≌△ADC

2)若BCD60°,AC=BC,求ADB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案