【題目】如圖,已知等邊三角形ABC,O為△ABC內(nèi)一點(diǎn),連接OA,OB,OC,將△BAO繞點(diǎn)B旋轉(zhuǎn)至△BCM.

1)依題意補(bǔ)全圖形;

2)若OA= ,OB= ,OC=1,求∠OCM的度數(shù).

【答案】1)補(bǔ)全圖形見(jiàn)解析;(2)∠OCM=90°.

【解析】

(1) 根據(jù)題意敘述可知旋轉(zhuǎn)角是60°,畫(huà)出圖形即可.

(2) 由旋轉(zhuǎn)的性質(zhì)得BO=BM, ∠OBM=ABC=60°,則可判斷△OBM為等邊三角形,所以OM=;在△OMC中,利用勾股定理逆定理可得△OMC為直角三角形,所以∠OCM=90°

解:(1)依題意補(bǔ)全圖形,如圖所示:

2)連接OM,

∵△ABC為等邊三角形,

∴∠ABC=60°.

∵△BAO旋轉(zhuǎn)得到△BCM OA= OB=,

MC=OA= MB=OB=,∠OBM=ABC=60° .

∴△OBM為等邊三角形.

OM= OB=.

在△OMC中,OC=1,MC= OM=.

,

OC 2 +MC 2 =OM 2.

∴∠OCM=90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為8的正方形紙片ABCD沿著EF折疊,使點(diǎn)C落在AB邊的中點(diǎn)M處.點(diǎn)D落在點(diǎn)D'處,MD'AD交于點(diǎn)G,則△AMG的內(nèi)切圓半徑的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙P的直徑,點(diǎn)在⊙P上,為⊙P外一點(diǎn),且∠ADC90°,直線為⊙P的切線.

試說(shuō)明:2B+∠DAB180°

若∠B30°,AD2,求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:⊙O的半徑為13cm,弦AB=24cm,弦CD=10cm,AB//CD.則這兩條平行弦AB,CD之間的距離是 ________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1,菱形ABCD的頂點(diǎn)A,D在直線上,∠BAD60°,以點(diǎn)A為旋轉(zhuǎn)中心將菱形ABCD順時(shí)針旋轉(zhuǎn)αα30°),得到菱形ABCD,BC交對(duì)角線AC于點(diǎn)M,CD交直線l于點(diǎn)N,連接MN

1)當(dāng)MNBD時(shí),求α的大。

2)如圖2,對(duì)角線BDAC于點(diǎn)H,交直線l與點(diǎn)G,延長(zhǎng)CBAB于點(diǎn)E,連接EH.當(dāng)HEB的周長(zhǎng)為2時(shí),求菱形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,將點(diǎn)C關(guān)于直線AB對(duì)稱(chēng)得到點(diǎn)D,作射線BDCA的延長(zhǎng)線交于點(diǎn)E,在CB的延長(zhǎng)線上取點(diǎn)F,使得BF=DE,連接AF.

備用圖

1)依題意補(bǔ)全圖形;

2)求證:AF=AE

3)作BA的延長(zhǎng)線與FD的延長(zhǎng)線交于點(diǎn)P,寫(xiě)出一個(gè)∠ACB的值,使得AP=AF成立,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E、F分別在BCCD上,下列結(jié)論:CE=CF;②∠AEB=75°;BE+DF=EF;S正方形ABCD=

其中正確的序號(hào)是   (把你認(rèn)為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xOy中,有AB為斜邊的等腰直角三角形ABC,其中點(diǎn)A02),點(diǎn)C(﹣10),拋物線yax2+ax2經(jīng)過(guò)B點(diǎn).

1)求B點(diǎn)的坐標(biāo);

2)求拋物線的解析式;

3)在拋物線上是否存在點(diǎn)N(點(diǎn)B除外),使得△ACN仍然是以AC為直角邊的等腰直角三角形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知RtABC中,∠C90°,點(diǎn)DBC上,且CD2,連接ADRtACD沿射線CB方向平移,得到RtA'C'D',C'到達(dá)B點(diǎn)時(shí),停止平移,設(shè)平移距離為xA'C'D'ABC重合面積為S,且xS的函數(shù)關(guān)系式如圖2所示,(0x≤6,與6xn所對(duì)應(yīng)的解析式不同).

1m   n   

2)寫(xiě)出Sx的函數(shù)關(guān)系式,直接寫(xiě)出x對(duì)應(yīng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案