分析 (1)根據等腰直角三角形的性質得到AC=BC,CE=CD,由∠ACB=∠DCE=90°,得到∠ACE=∠BCD,證得△ACD≌△BCE,根據全等三角形的性質得到AE=BD,∠AEC=∠BDC,根據鄰補角的定義得到∠AEC=135°即可得到結論;②根據等腰直角三角形的性質即可得到結論.
(2)如圖2,過C作CH⊥AD于H,CE⊥CD交AD于E,于是得到△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,根據勾股定理得到AB=$\sqrt{2}$AC=2,AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\sqrt{3}$,由等腰直角三角形的性質即可得到結論.
解答 解:(1)①∵△ACB和△DCE均為等腰直角三角形,
∴AC=BC,CE=CD,∵∠ACB=∠DCE=90°,∴∠ACE=∠BCD,
在△ACE與△BCD中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{CE=CD}\end{array}\right.$,
∴△ACD≌△BCE,
∴AE=BD,∠AEC=∠BDC,
∵∠CED=∠CDE=45°,
∴∠AEC=135°,∴∠BDC=135°,
∴∠ADB=90°;
故答案為:AE=BD,90°;
②在等腰直角三角形DCE中,CM為斜邊DE上的高,
∴CM=DM=ME,∴DE=2CM.
∴AE=DE+AD=2CM+BE;
(2)如圖2,過C作CH⊥AD于H,CE⊥CD交AD于E,
則△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,
∵AB=$\sqrt{2}$AC=2,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\sqrt{3}$,
∴DE=AD-AE=$\sqrt{3}$-1,
∵△CDE是等腰直角三角形,
∴CH=$\frac{1}{2}$DE=$\frac{\sqrt{3}-1}{2}$,
如圖3所示,過C作CH⊥AD于H,CE⊥CD交AD于E,
則△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,
∵AB=$\sqrt{2}$AC=2,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\sqrt{3}$,
∴DE=AE+AD=1+$\sqrt{3}$,
∵△CDE是等腰直角三角形,
∴CH=$\frac{1}{2}$DE=$\frac{\sqrt{3}+1}{2}$,
∴點C到直線的距離是$\frac{\sqrt{3}-1}{2}$或$\frac{\sqrt{3}+1}{2}$,
故答案為:$\frac{\sqrt{3}-1}{2}$或$\frac{\sqrt{3}+1}{2}$.
點評 此題主要考查了全等三角形的判定方法和性質,等腰直角三角形的性質和應用,要熟練掌握,解答此題的關鍵是要明確:在判定三角形全等時,關鍵是選擇恰當的判定條件.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 了解我省中學生的視力情況 | |
B. | 了解七(1)班學生校服的尺碼情況 | |
C. | 檢測一批電燈泡的使用壽命 | |
D. | 調查安徽衛(wèi)視《第一時間》欄目的收視率 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | “打開電視任選一頻道,播放動畫片”是必然事件 | |
B. | “任意畫出一個正六邊形,它的中心角是60°”是必然事件 | |
C. | “旋轉前、后的圖形全等”是隨機事件 | |
D. | 任意擲一枚質地均勻的硬幣10次正面朝上的一定是5次 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com